The Action of Water

1419. Lunar and Planetary Institute, Houston (CD-

[1]  A. Bischoff,et al.  Early aqueous activity on primitive meteorite parent bodies , 1996, Nature.

[2]  M. Prinz,et al.  CI chondrite-like clasts in the Nilpena polymict ureilite: Implications for aqueous alteration processes in CI chondrites , 1992 .

[3]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[4]  Russell,et al.  Oxygen reservoirs in the early solar nebula inferred from an allende CAI , 1998, Science.

[5]  R. Clayton,et al.  Origin of dark clasts in the Acfer 059/El Djouf 001 CR2 chondrite , 1994 .

[6]  R. Clayton,et al.  Dark inclusions in Allende, Leoville, and Vigarano - Evidence for nebular oxidation of CV3 constituents , 1990 .

[7]  P. Buseck,et al.  Mineralogy of fine-grained rims in the alh 81002 cm chondrite , 2000 .

[8]  D. J. Barber,et al.  Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites , 1989 .

[9]  P. Buseck,et al.  An unusual layered mineral in chondrules and aggregates of the Allende carbonaceous chondrite , 1982, Nature.

[10]  H. McSween Aqueous alteration in carbonaceous chondrites - Mass balance constraints on matrix mineralogy , 1987 .

[11]  R. Clayton,et al.  Paired Renazzo-type (CR) carbonaceous chondrites from the Sahara , 1993 .

[12]  A. Brearley,et al.  Aqueous Alteration of Carbonaceous Chondrites: New Insights from Comparative Studies of Two Unbrecciated CM2 Chondrites, Y 791198 and ALH 81002 , 2004 .

[13]  R. Clayton,et al.  Carbon isotopes and light element abundances in carbonaceous chondrites , 1986 .

[14]  T. Hiroi,et al.  The first detection of water absorption on a D type asteroid , 2003 .

[15]  Richard P. Binzel,et al.  Asteroid spectroscopy: Progress and perspectives , 1993 .

[16]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[17]  A. Rubin Correlated petrologic and geochemical characteristics of CO3 chondrites , 1998 .

[18]  R. Clayton,et al.  The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .

[19]  E. Anders,et al.  Chemical Evolution of the Carbonaceous Chondrites , 1962 .

[20]  W. Bourcier,et al.  Constraints on the anhydrous precursor mineralogy of fine‐grained materials in CM carbonaceous chondrites , 1998 .

[21]  J. Kerridge Origins of organic matter in meteorites. , 1993 .

[22]  M. Zolensky,et al.  Aqueous alteration on the hydrous asteroids - Results of EQ3/6 computer simulations , 1989 .

[23]  Tomoki Nakamura,et al.  Microdistribution of primordial noble gases in CM chondrites determined by in situ laser microprobe analysis: decipherment of nebular processes , 1999 .

[24]  Brian Mason,et al.  The carbonaceous chondrites , 1963 .

[25]  A. Bischoff,et al.  Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration—A review , 1998 .

[26]  J. Kerridge,et al.  Carbonates and sulfates in CI chondrites: formation by aqueous activity on the parent body. , 1988, Meteoritics.

[27]  D. Wark,et al.  Marker Events in the Early Evolution of the Solar System: Evidence from Rims on Calcium-Aluminium-Rich Inclusions in Carbonaceous Chondrites , 1977 .

[28]  G. Kurat The Formation of Chondrules and Chondrites and Some Observations on Chondrules from the Tieschitz Meteorite , 1969 .

[29]  P. Buseck,et al.  Phyllosilicates in the Mokoia CV carbonaceous chondrite: Evidence for aqueous alteration in an oxidizing environment , 1990 .

[30]  M. Kimura,et al.  Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites , 1998 .

[31]  N. Rosenberg,et al.  Modeling aqueous alteration of CM carbonaceous chondrites , 2001 .

[32]  M. Zolensky,et al.  Secondary calcium‐iron‐rich minerals in the Bali‐like and Allende‐like oxidized CV3 chondrites and Allende dark inclusions , 1998 .

[33]  C. Pillinger,et al.  The oxygen isotopic composition of water from Tagish Lake: Its relationship to low‐temperature phases and to other carbonaceous chondrites , 2002 .

[34]  P. Buseck,et al.  Calcic Micas in the Allende Meteorite: Evidence for Hydration Reactions in the Early Solar Nebula , 1991, Science.

[35]  D. Lauretta,et al.  A Nebular Origin for Chondritic Fine-Grained Phyllosilicates , 2003, Science.

[36]  M. Zolensky,et al.  Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .

[37]  A. Brearley,et al.  Mineralogy and Textural Characteristics of Fine-grained Rims in the Yamato 791198 CM2 Carbonaceous Chondrite: Constraints on the Location of Aqueous Alteration , 2003 .

[38]  R. Clayton,et al.  Melt solidification and late-stage evaporation in the evolution of a FUN inclusion from the Vigarano C3V chondrite , 1991 .

[39]  P. Buseck,et al.  Fine-grained Rim Mineralogy of the Cold Bokkeveld CM Chondrite by Transmission Electron Microscopy , 2001 .

[40]  I. Hutcheon,et al.  Timescales and settings for alteration of chondritic meteorites , 2005 .

[41]  M. Christophe-Michel-Lévy La matrice noire et blanche de la chondrite de Tieschitz (H3) , 1976 .

[42]  Modeling of Liquid Water on CM Meteorite Parent Bodies and Implications for Amino Acid Racemization , 1999, physics/9911032.

[43]  M. Zolensky,et al.  Carbide-magnetite assemblages in type-3 ordinary chondrites , 1997 .

[44]  T. Kojima,et al.  Indicators of aqueous alteration and thermal metamorphism on the CV parent body: Microtextures of a dark inclusion from Allende , 1996 .

[45]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[46]  A. Brearley Origin of graphitic carbon and pentlandite in matrix olivines in the Allende meteorite. , 1999, Science.

[47]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[48]  F. Robert,et al.  Interstellar water in meteorites? , 1995, Geochimica et cosmochimica acta.

[49]  L. Grossman,et al.  Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite , 1987 .

[50]  P. Buseck,et al.  Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .

[51]  L. Grossman,et al.  Chemical compositions of refractory inclusions from the Vigarano and Leoville carbonaceous chondrites , 1990 .

[52]  J. Bridges,et al.  Halite and stable chlorine isotopes in the Zag H3–6 breccia , 2004 .

[53]  Stephen M. Larson,et al.  Ferric Iron in Primitive Asteroids: A 0.43-μm Absorption Feature , 1993 .

[54]  L. Leshin,et al.  Oxygen Isotope Systematics of CI and CM Chondrite Sulfate: Implications for Evolution and Mobility of Water in Planetesimals , 2001 .

[55]  Ikeda,et al.  Petrology of the Yamato-8449 CR chondrite , 1995 .

[56]  Faith Vilas,et al.  Iron Alteration Minerals in the Visible and Near-Infrared Spectra of Low-Albedo Asteroids , 1994 .

[57]  J. Whitby,et al.  Iodine-xenon analysis of ordinary chondrite halide: Implications for early solar system water , 2004 .

[58]  Peter R. Buseck,et al.  Matrix mineralogy of the Orgueil CI carbonaceous chondrite , 1988 .

[59]  E. Young The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[60]  S. Richardson VEIN FORMATION IN THE C1 CARBONACEOUS CHONDRITES , 1978 .

[61]  A. Brearley,et al.  Zoned chondrules in Semarkona: Evidence for high‐ and low‐temperature processing , 2002 .

[62]  Martin R. Lee,et al.  Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite , 1996 .

[63]  Robert F. Martin,et al.  Severe leaching of trachytic glass without devitrification, Terceira, Azores , 1994 .

[64]  P. Buseck,et al.  Intergrown mica and montmorillonite in the Allende carbonaceous chondrite , 1982, Nature.

[65]  I. Hutcheon,et al.  Compositional Zoning and Mn-Cr Systematics in Carbonates from the Y791198 CM2 Carbonaceous Chondrite , 2001 .

[66]  M. Zolensky,et al.  The Kaidun Microbreccia Meteorite: A Harvest from the Inner and Outer Asteroid Belt , 2003 .

[67]  D. J. Barber Phyllosilicates and other layer-structured materials in stony meteorites , 1985, Clay Minerals.

[68]  L. Keller A transmission electron microscope study of iron‐nickel carbides in the matrix of the Semarkona unequilibrated ordinary chondrite , 1998 .

[69]  K. Bostrom,et al.  Surface conditions of the Orgueil meteorite parent body as indicated by mineral associations , 1965 .

[70]  J F Kerridge,et al.  Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.

[71]  T. Bunch,et al.  Aqueous activity on asteroids - Evidence from carbonaceous meteorites , 1979 .

[72]  A. Brearley,et al.  Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites , 2000 .

[73]  ’. R.HUTCHISON The Semarkona meteorite : First recorded occurrence of smectite in an ordinary chondrite , and its implications , 2002 .

[74]  C. Johnson,et al.  Carbonate compositions in CM and CI chondrites, and implications for aqueous alteration , 1993 .

[75]  J. Eiler,et al.  Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites 1 1 Associate , 2004 .

[76]  J. N. Barrows,et al.  The Allende meteorite reference sample , 1987 .

[77]  A. Rubin,et al.  THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .

[78]  A. Brearley Phyllosilicates in the matrix of the unique carbonaceous chondrite Lewis Cliff 85332 and possible implications for the aqueous alteration of CI chondrites , 1997 .

[79]  M. Prinz,et al.  The Grosvenor Mountains 95577 CR1 Chondrite and Hydration of the CR Chondrites , 2000 .

[80]  J. Bridges,et al.  Elemental redistribution in Tieschitz and the origin of white matrix , 1998 .

[81]  M. Zolensky,et al.  A terrestrial origin for sulfate veins in CI1 chondrites , 2001 .

[82]  R. Clayton,et al.  Oxygen isotopes in separated components of CI and CM meteorites , 1994 .

[83]  Martin R. Lee The Petrography, Mineralogy and Origins of Calcium Sulphate within the Cold Bokkeveld CM Carbonaceous Chondrite , 1993 .

[84]  M. Zolensky,et al.  Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? , 1995 .

[85]  Peter R. Buseck,et al.  MATRICES OF CARBONACEOUS CHONDRITE METEORITES , 1993 .

[86]  Michael E. Zolensky,et al.  Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite , 2002 .

[87]  K. Tomeoka,et al.  Phyllosilicate-rich chondrule rims in the vigarano cv3 chondrite: evidence for parent-body processes , 2000 .

[88]  Ian A. Franchi,et al.  Light dement geochemistry of the Tagish Lake CI2 chondrite: Comparison with CI1 and CM2 meteorites , 2002 .

[89]  A. Brearley,et al.  Carbonates in Vigarano: Terrestrial, preterrestrial, or both? , 2005 .

[90]  S. Richardson,et al.  The composition of carbonaceous chondrite matrix , 1977 .

[91]  A. Davis,et al.  The distribution of aluminum-26 in the early Solar System—A reappraisal , 1995 .

[92]  M. Zolensky,et al.  The halite‐bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H‐chondrite parent body , 2002 .

[93]  B. Nagy Investigations of the Orgueil Carbonaceous Meteorite , 1966 .

[94]  G. Lugmair,et al.  Early solar system events and timescale , 2001 .

[95]  D. Sears,et al.  Two chondrule groups each with distinctive rims in Murchison recognized by cathodoluminescence , 1993 .

[96]  D. J. Barber,et al.  Yamato-82042: an unusual carbonaceous chondrite with CM affinities , 1987 .

[97]  H. McSween,et al.  Minor and trace element concentrations in carbonates of carbonaceous chondrites, and implications for the compositions of coexisting fluids , 1994 .

[98]  K. Keil,et al.  Early aqueous alteration, explosive disruption, and reprocessing of asteroids , 1999 .

[99]  M. Zolensky,et al.  Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998) , 1999, Science.

[100]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[101]  R. Clayton,et al.  The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .

[102]  A. Bischoff,et al.  Carbonates in CI chondrites: clues to parent body evolution. , 1996, Geochimica et cosmochimica acta.

[103]  Carle M. Pieters,et al.  METEORITE AND ASTEROID REFLECTANCE SPECTROSCOPY: Clues to Early Solar System Processes , 1994 .

[104]  M. Zolensky,et al.  CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only] , 1994 .

[105]  R. Wogelius,et al.  Olivine dissolution kinetics at near-surface conditions , 1992 .

[106]  R. Clayton,et al.  Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions. , 1994, Geochimica et cosmochimica acta.

[107]  J. Bridges,et al.  Extinct 129I in Halite from a Primitive Meteorite: Evidence for Evaporite Formation in the Early Solar System , 2000 .

[108]  P. Buseck,et al.  Aqueous alteration in the Kaba CV3 carbonaceous chondrite , 1989 .

[109]  Y. Ikeda Alteration of chondrules and matrices in the four Antarctic carbonaceous chondrites ALH-77307 (C3), Y-790123 (C2), Y-75293 (C2), and Y-74662 (C2) , 1983 .

[110]  I. Hutcheon,et al.  Carbonates in the CM1 Chondrite ALH84034: Mineral Chemistry, Zoning and Mn-Cr Systematics , 2000 .

[111]  S. Richardson Alteration of mesostasis in chondrules and aggregates from three C2 carbonaceous chondrites , 1981 .

[112]  D. Mittlefehldt,et al.  RbSr studies of CI and CM chondrites , 1976 .

[113]  L. Leshin,et al.  Carbonates in CM2 chondrites: constraints on alteration conditions from oxygen isotopic compositions and petrographic observations , 2003 .

[114]  R. Clayton,et al.  The Leoville (CV3) accretionary breccia , 1985 .

[115]  H. McSween,et al.  Water and the thermal evolution of carbonaceous chondrite parent bodies , 1989 .

[116]  M. Zolensky,et al.  Origin of fayalitic olivine rims and lath‐shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions , 1997 .

[117]  M. Toriumi Grain size distribution of the matrix in the Allende chondrite , 1989 .

[118]  H. Takeda,et al.  Unusual dark clasts in the Vigarano CV3 carbonaceous chondrite: Record of parent body process , 1993 .

[119]  A. Brearley Disordered biopyriboles, amphibole, and talc in the Allende meteorite: products of nebular or parent body aqueous alteration? , 1997, Science.

[120]  M. Zolensky,et al.  Computer Modeling of Aqueous Alteration on Carbonaceous Chondrite Parent Bodies , 1992 .

[121]  C. Pillinger,et al.  The carbon and oxygen isotopic composition of meteoritic carbonates , 1988 .

[122]  J. Macdougall,et al.  Clues to the origin of sulfide minerals in CI chondrites , 1979 .

[123]  P. Buseck,et al.  Nanometer-scale measurements of iron oxidation states of cronstedtite from primitive meteorites , 2003 .

[124]  K. Tomeoka Phyllosilicate veins in a CI meteorite: evidence for aqueous alteration on the parent body , 1990, Nature.

[125]  T. Noguchi Petrology and mineralogy of the PCA 91082 chondrite and its comparison with the Yamato-793495(CR) chondrite , 1995 .

[126]  Young,et al.  Fluid flow in chondritic parent bodies: deciphering the compositions of planetesimals , 1999, Science.

[127]  J. Lunine,et al.  Distribution and Evolution of Water Ice in the Solar Nebula: Implications for Solar System Body Formation☆ , 1998 .

[128]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[129]  P. Cassen,et al.  Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula , 1994 .

[130]  R. Cohen,et al.  Mineralogy and petrology of chondrules and inclusions in the Mokoia CV3 chondrite , 1983 .

[131]  J. Kerridge LOW‐TEMPERATURE MINERALS FROM THE FINE‐GRAINED MATRIX OF SOME CARBONACEOUS METEORITES , 1964 .

[132]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[133]  K. Keil,et al.  In situ growth of Ca-rich rims around allende dark inclusions , 2000 .

[134]  R. Wogelius,et al.  Olivine dissolution at 25°C: Effects of pH, CO2, and organic acids , 1991 .

[135]  P. Buseck,et al.  Matrix mineralogy of the Lance CO3 carbonaceous chondrite - A transmission electron microscope study , 1990 .

[136]  Y. Guan,et al.  Oxygen isotopic anatomy of Tagish Lake; relationship to primary and secondary minerals in CI and CM chondrites , 2001 .

[137]  A. Brearley Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components , 1993 .

[138]  Michael E. Zolensky,et al.  The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid , 2001, Science.