Saddle Slow Manifolds and Canard Orbits in R4$\mathbb{R}^{4}$ and Application to the Full Hodgkin–Huxley Model

Many physiological phenomena have the property that some variables evolve much faster than others. For example, neuron models typically involve observable differences in time scales. The Hodgkin–Huxley model is well known for explaining the ionic mechanism that generates the action potential in the squid giant axon. Rubin and Wechselberger (Biol. Cybern. 97:5–32, 2007) nondimensionalized this model and obtained a singularly perturbed system with two fast, two slow variables, and an explicit time-scale ratio ε. The dynamics of this system are complex and feature periodic orbits with a series of action potentials separated by small-amplitude oscillations (SAOs); also referred to as mixed-mode oscillations (MMOs). The slow dynamics of this system are organized by two-dimensional locally invariant manifolds called slow manifolds which can be either attracting or of saddle type.In this paper, we introduce a general approach for computing two-dimensional saddle slow manifolds and their stable and unstable fast manifolds. We also develop a technique for detecting and continuing associated canard orbits, which arise from the interaction between attracting and saddle slow manifolds, and provide a mechanism for the organization of SAOs in R4$\mathbb{R}^{4}$. We first test our approach with an extended four-dimensional normal form of a folded node. Our results demonstrate that our computations give reliable approximations of slow manifolds and canard orbits of this model. Our computational approach is then utilized to investigate the role of saddle slow manifolds and associated canard orbits of the full Hodgkin–Huxley model in organizing MMOs and determining the firing rates of action potentials. For ε sufficiently large, canard orbits are arranged in pairs of twin canard orbits with the same number of SAOs. We illustrate how twin canard orbits partition the attracting slow manifold into a number of ribbons that play the role of sectors of rotations. The upshot is that we are able to unravel the geometry of slow manifolds and associated canard orbits without the need to reduce the model.

[1]  Jonathan E. Rubin,et al.  Averaging, Folded Singularities, and Torus Canards: Explaining Transitions between Bursting and Spiking in a Coupled Neuron Model , 2015, SIAM J. Appl. Dyn. Syst..

[2]  Frédérique Clément,et al.  Mixed-Mode Oscillations in a Multiple Time Scale Phantom Bursting System , 2012, SIAM J. Appl. Dyn. Syst..

[3]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[4]  Bernd Krauskopf,et al.  Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields , 2010 .

[5]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[6]  Jonathan E. Rubin,et al.  Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.

[7]  Nancy J Kopell,et al.  New dynamics in cerebellar Purkinje cells: torus canards. , 2008, Physical review letters.

[8]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[9]  Vivien Kirk,et al.  Effects of quasi-steady-state reduction on biophysical models with oscillations. , 2016, Journal of theoretical biology.

[10]  M. Wechselberger À propos de canards (Apropos canards) , 2012 .

[11]  J. Rubin,et al.  The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.

[12]  B. Krauskopf,et al.  Global isochrons of a planar system near a phaseless set with saddle equilibria , 2016 .

[13]  Krasimira Tsaneva-Atanasova,et al.  Dynamical systems analysis of spike-adding mechanisms in transient bursts , 2012, The Journal of Mathematical Neuroscience.

[14]  Richard Bertram,et al.  BIFURCATIONS OF CANARD-INDUCED MIXED MODE OSCILLATIONS IN A PITUITARY LACTOTROPH MODEL , 2012 .

[15]  Bernd Krauskopf,et al.  The Geometry of Slow Manifolds near a Folded Node , 2008, SIAM J. Appl. Dyn. Syst..

[16]  Sebastian Wieczorek,et al.  Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems , 2003 .

[17]  Bernd Krauskopf,et al.  Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .

[18]  David Terman,et al.  Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .

[19]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[20]  K. Showalter,et al.  Period Doubling and Chaos in a Three-Variable Autocatalator , 1990 .

[21]  Valery Petrov,et al.  Mixed‐mode oscillations in chemical systems , 1992 .

[22]  John Guckenheimer,et al.  Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..

[23]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[24]  H. Osinga,et al.  Transient spike adding in the presence of equilibria , 2016 .

[25]  Helwig Löffelmann,et al.  GEOMETRY OF MIXED-MODE OSCILLATIONS IN THE 3-D AUTOCATALATOR , 1998 .

[26]  N. Kopell,et al.  Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. , 2008, Chaos.

[27]  Shinji Doi,et al.  Complex nonlinear dynamics of the Hodgkin–Huxley equations induced by time scale changes , 2001, Biological Cybernetics.

[28]  Arthur Sherman,et al.  Resetting Behavior in a Model of Bursting in Secretory Pituitary Cells: Distinguishing Plateaus from Pseudo-Plateaus , 2008, Bulletin of mathematical biology.

[29]  John Guckenheimer,et al.  Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..

[30]  Bernd Krauskopf,et al.  Solving Winfree's puzzle: the isochrons in the FitzHugh-Nagumo model. , 2014, Chaos.

[31]  Bernd Krauskopf,et al.  Forward-Time and Backward-Time Isochrons and Their Interactions , 2015, SIAM J. Appl. Dyn. Syst..

[32]  É. Benoît,et al.  Chasse au canard (première partie) , 1981 .

[33]  Bernd Krauskopf,et al.  Two-dimensional global manifolds of vector fields. , 1999, Chaos.

[34]  É. Benoît Chasse au canard , 1980 .

[35]  John Guckenheimer,et al.  Canards at Folded Nodes , 2005 .

[36]  Bernd Krauskopf,et al.  Mixed-Mode Oscillations and Twin Canard Orbits in an Autocatalytic Chemical Reaction , 2017, SIAM J. Appl. Dyn. Syst..

[37]  J. Keizer,et al.  Minimal model for membrane oscillations in the pancreatic beta-cell. , 1983, Biophysical journal.

[38]  John Guckenheimer,et al.  Bifurcation, Bursting, and Spike Frequency Adaptation , 1997, Journal of Computational Neuroscience.

[39]  Willy Govaerts,et al.  Bifurcation, bursting and Spike Generation in a Neural Model , 2002, Int. J. Bifurc. Chaos.

[40]  F. Tito Arecchi,et al.  Chaotic spiking and incomplete homoclinic scenarios in semiconductor lasers with optoelectronic feedback , 2009 .

[41]  Bernd Krauskopf,et al.  The geometry of mixed-mode oscillations in the Olsen model for peroxidase-oxidase reaction , 2009 .

[42]  Richard Bertram,et al.  Multiple Geometric Viewpoints of Mixed Mode Dynamics Associated with Pseudo-plateau Bursting , 2013, SIAM J. Appl. Dyn. Syst..

[43]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[44]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[45]  John Guckenheimer,et al.  Unfoldings of Singular Hopf Bifurcation , 2011, SIAM J. Appl. Dyn. Syst..

[46]  K. Uldall Kristiansen,et al.  Computation of Saddle-Type Slow Manifolds Using Iterative Methods , 2014, SIAM J. Appl. Dyn. Syst..

[47]  Bernd Krauskopf,et al.  Global bifurcations of the Lorenz manifold , 2006 .

[48]  Dwight Barkley,et al.  Slow manifolds and mixed‐mode oscillations in the Belousov–Zhabotinskii reaction , 1988 .

[49]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[50]  Bernd Krauskopf,et al.  Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. , 2008, Chaos.

[51]  Shinji Doi,et al.  Chaotic spiking in the Hodgkin-Huxley nerve model with slow inactivation of the sodium current. , 2004, Journal of integrative neuroscience.

[52]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[53]  Martin Wechselberger,et al.  Bifurcations of mixed-mode oscillations in a stellate cell model , 2009 .

[54]  Richard J. Field,et al.  A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction , 1992, Nature.

[55]  Lars Folke Olsen,et al.  An enzyme reaction with a strange attractor , 1983 .

[56]  J. Guckenheimer,et al.  Bifurcation of the Hodgkin and Huxley equations: A new twist , 1993 .

[57]  Jeff Moehlis,et al.  Continuation-based Computation of Global Isochrons , 2010, SIAM J. Appl. Dyn. Syst..

[58]  Bard Ermentrout,et al.  Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron Model , 2009, SIAM J. Appl. Dyn. Syst..

[59]  Olivier Faugeras,et al.  Slow-Fast Transitions to Seizure States in the Wendling-Chauvel Neural Mass Model , 2015 .

[60]  H. Swinney,et al.  A complex transition sequence in the belousov-zhabotinskii reaction , 1985 .

[61]  Peter Szmolyan,et al.  Multiple Time Scales and Canards in a Chemical Oscillator , 2001 .

[62]  Alan R. Champneys,et al.  Codimension-Two Homoclinic Bifurcations Underlying Spike Adding in the Hindmarsh-Rose Burster , 2011, SIAM J. Appl. Dyn. Syst..

[63]  Martin Krupa,et al.  Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .

[64]  B. Krauskopf,et al.  A Lin's method approach for detecting all canard orbits arising from a folded node , 2017 .

[65]  Theodore Vo Generic torus canards , 2016, 1606.02366.

[66]  Yangyang Wang,et al.  Understanding and Distinguishing Three-Time-Scale Oscillations: Case Study in a Coupled Morris-Lecar System , 2015, SIAM J. Appl. Dyn. Syst..

[67]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[68]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[69]  John Guckenheimer,et al.  A Geometric Model for Mixed-Mode Oscillations in a Chemical System , 2011, SIAM J. Appl. Dyn. Syst..

[70]  Bernd Krauskopf,et al.  Tangencies Between Global Invariant Manifolds and Slow Manifolds Near a Singular Hopf Bifurcation , 2018, SIAM J. Appl. Dyn. Syst..

[71]  Mathieu Desroches,et al.  A showcase of torus canards in neuronal bursters , 2012, Journal of mathematical neuroscience.

[72]  Bernd Krauskopf,et al.  Computing Invariant Manifolds via the Continuation of Orbit Segments , 2007 .

[73]  Hinke M. Osinga,et al.  Computing the Stable Manifold of a Saddle Slow Manifold , 2018, SIAM J. Appl. Dyn. Syst..

[74]  Vivien Kirk,et al.  Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales , 2011, Journal of mathematical neuroscience.

[75]  Mathieu Desroches,et al.  Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. , 2013, Chaos.

[76]  Richard J. Field,et al.  Simple models of deterministic chaos in the Belousov-Zhabotinskii reaction , 1991 .

[77]  Bernd Krauskopf,et al.  Saddle Invariant Objects and Their Global Manifolds in a Neighborhood of a Homoclinic Flip Bifurcation of Case B , 2017, SIAM J. Appl. Dyn. Syst..