Saddle Slow Manifolds and Canard Orbits in R4$\mathbb{R}^{4}$ and Application to the Full Hodgkin–Huxley Model
暂无分享,去创建一个
[1] Jonathan E. Rubin,et al. Averaging, Folded Singularities, and Torus Canards: Explaining Transitions between Bursting and Spiking in a Coupled Neuron Model , 2015, SIAM J. Appl. Dyn. Syst..
[2] Frédérique Clément,et al. Mixed-Mode Oscillations in a Multiple Time Scale Phantom Bursting System , 2012, SIAM J. Appl. Dyn. Syst..
[3] P. Szmolyan,et al. Canards in R3 , 2001 .
[4] Bernd Krauskopf,et al. Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields , 2010 .
[5] Balth. van der Pol Jun.. LXXXVIII. On “relaxation-oscillations” , 1926 .
[6] Jonathan E. Rubin,et al. Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.
[7] Nancy J Kopell,et al. New dynamics in cerebellar Purkinje cells: torus canards. , 2008, Physical review letters.
[8] S. Yoshizawa,et al. An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.
[9] Vivien Kirk,et al. Effects of quasi-steady-state reduction on biophysical models with oscillations. , 2016, Journal of theoretical biology.
[10] M. Wechselberger. À propos de canards (Apropos canards) , 2012 .
[11] J. Rubin,et al. The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.
[12] B. Krauskopf,et al. Global isochrons of a planar system near a phaseless set with saddle equilibria , 2016 .
[13] Krasimira Tsaneva-Atanasova,et al. Dynamical systems analysis of spike-adding mechanisms in transient bursts , 2012, The Journal of Mathematical Neuroscience.
[14] Richard Bertram,et al. BIFURCATIONS OF CANARD-INDUCED MIXED MODE OSCILLATIONS IN A PITUITARY LACTOTROPH MODEL , 2012 .
[15] Bernd Krauskopf,et al. The Geometry of Slow Manifolds near a Folded Node , 2008, SIAM J. Appl. Dyn. Syst..
[16] Sebastian Wieczorek,et al. Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems , 2003 .
[17] Bernd Krauskopf,et al. Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .
[18] David Terman,et al. Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .
[19] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[20] K. Showalter,et al. Period Doubling and Chaos in a Three-Variable Autocatalator , 1990 .
[21] Valery Petrov,et al. Mixed‐mode oscillations in chemical systems , 1992 .
[22] John Guckenheimer,et al. Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..
[23] Martin Wechselberger,et al. Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..
[24] H. Osinga,et al. Transient spike adding in the presence of equilibria , 2016 .
[25] Helwig Löffelmann,et al. GEOMETRY OF MIXED-MODE OSCILLATIONS IN THE 3-D AUTOCATALATOR , 1998 .
[26] N. Kopell,et al. Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. , 2008, Chaos.
[27] Shinji Doi,et al. Complex nonlinear dynamics of the Hodgkin–Huxley equations induced by time scale changes , 2001, Biological Cybernetics.
[28] Arthur Sherman,et al. Resetting Behavior in a Model of Bursting in Secretory Pituitary Cells: Distinguishing Plateaus from Pseudo-Plateaus , 2008, Bulletin of mathematical biology.
[29] John Guckenheimer,et al. Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..
[30] Bernd Krauskopf,et al. Solving Winfree's puzzle: the isochrons in the FitzHugh-Nagumo model. , 2014, Chaos.
[31] Bernd Krauskopf,et al. Forward-Time and Backward-Time Isochrons and Their Interactions , 2015, SIAM J. Appl. Dyn. Syst..
[32] É. Benoît,et al. Chasse au canard (première partie) , 1981 .
[33] Bernd Krauskopf,et al. Two-dimensional global manifolds of vector fields. , 1999, Chaos.
[34] É. Benoît. Chasse au canard , 1980 .
[35] John Guckenheimer,et al. Canards at Folded Nodes , 2005 .
[36] Bernd Krauskopf,et al. Mixed-Mode Oscillations and Twin Canard Orbits in an Autocatalytic Chemical Reaction , 2017, SIAM J. Appl. Dyn. Syst..
[37] J. Keizer,et al. Minimal model for membrane oscillations in the pancreatic beta-cell. , 1983, Biophysical journal.
[38] John Guckenheimer,et al. Bifurcation, Bursting, and Spike Frequency Adaptation , 1997, Journal of Computational Neuroscience.
[39] Willy Govaerts,et al. Bifurcation, bursting and Spike Generation in a Neural Model , 2002, Int. J. Bifurc. Chaos.
[40] F. Tito Arecchi,et al. Chaotic spiking and incomplete homoclinic scenarios in semiconductor lasers with optoelectronic feedback , 2009 .
[41] Bernd Krauskopf,et al. The geometry of mixed-mode oscillations in the Olsen model for peroxidase-oxidase reaction , 2009 .
[42] Richard Bertram,et al. Multiple Geometric Viewpoints of Mixed Mode Dynamics Associated with Pseudo-plateau Bursting , 2013, SIAM J. Appl. Dyn. Syst..
[43] R. FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.
[44] John Guckenheimer,et al. Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..
[45] John Guckenheimer,et al. Unfoldings of Singular Hopf Bifurcation , 2011, SIAM J. Appl. Dyn. Syst..
[46] K. Uldall Kristiansen,et al. Computation of Saddle-Type Slow Manifolds Using Iterative Methods , 2014, SIAM J. Appl. Dyn. Syst..
[47] Bernd Krauskopf,et al. Global bifurcations of the Lorenz manifold , 2006 .
[48] Dwight Barkley,et al. Slow manifolds and mixed‐mode oscillations in the Belousov–Zhabotinskii reaction , 1988 .
[49] A. Hodgkin,et al. A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.
[50] Bernd Krauskopf,et al. Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. , 2008, Chaos.
[51] Shinji Doi,et al. Chaotic spiking in the Hodgkin-Huxley nerve model with slow inactivation of the sodium current. , 2004, Journal of integrative neuroscience.
[52] John Rinzel,et al. A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .
[53] Martin Wechselberger,et al. Bifurcations of mixed-mode oscillations in a stellate cell model , 2009 .
[54] Richard J. Field,et al. A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction , 1992, Nature.
[55] Lars Folke Olsen,et al. An enzyme reaction with a strange attractor , 1983 .
[56] J. Guckenheimer,et al. Bifurcation of the Hodgkin and Huxley equations: A new twist , 1993 .
[57] Jeff Moehlis,et al. Continuation-based Computation of Global Isochrons , 2010, SIAM J. Appl. Dyn. Syst..
[58] Bard Ermentrout,et al. Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron Model , 2009, SIAM J. Appl. Dyn. Syst..
[59] Olivier Faugeras,et al. Slow-Fast Transitions to Seizure States in the Wendling-Chauvel Neural Mass Model , 2015 .
[60] H. Swinney,et al. A complex transition sequence in the belousov-zhabotinskii reaction , 1985 .
[61] Peter Szmolyan,et al. Multiple Time Scales and Canards in a Chemical Oscillator , 2001 .
[62] Alan R. Champneys,et al. Codimension-Two Homoclinic Bifurcations Underlying Spike Adding in the Hindmarsh-Rose Burster , 2011, SIAM J. Appl. Dyn. Syst..
[63] Martin Krupa,et al. Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .
[64] B. Krauskopf,et al. A Lin's method approach for detecting all canard orbits arising from a folded node , 2017 .
[65] Theodore Vo. Generic torus canards , 2016, 1606.02366.
[66] Yangyang Wang,et al. Understanding and Distinguishing Three-Time-Scale Oscillations: Case Study in a Coupled Morris-Lecar System , 2015, SIAM J. Appl. Dyn. Syst..
[67] Eugene M. Izhikevich,et al. Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.
[68] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[69] John Guckenheimer,et al. A Geometric Model for Mixed-Mode Oscillations in a Chemical System , 2011, SIAM J. Appl. Dyn. Syst..
[70] Bernd Krauskopf,et al. Tangencies Between Global Invariant Manifolds and Slow Manifolds Near a Singular Hopf Bifurcation , 2018, SIAM J. Appl. Dyn. Syst..
[71] Mathieu Desroches,et al. A showcase of torus canards in neuronal bursters , 2012, Journal of mathematical neuroscience.
[72] Bernd Krauskopf,et al. Computing Invariant Manifolds via the Continuation of Orbit Segments , 2007 .
[73] Hinke M. Osinga,et al. Computing the Stable Manifold of a Saddle Slow Manifold , 2018, SIAM J. Appl. Dyn. Syst..
[74] Vivien Kirk,et al. Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales , 2011, Journal of mathematical neuroscience.
[75] Mathieu Desroches,et al. Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. , 2013, Chaos.
[76] Richard J. Field,et al. Simple models of deterministic chaos in the Belousov-Zhabotinskii reaction , 1991 .
[77] Bernd Krauskopf,et al. Saddle Invariant Objects and Their Global Manifolds in a Neighborhood of a Homoclinic Flip Bifurcation of Case B , 2017, SIAM J. Appl. Dyn. Syst..