Online eigenvector transformation reflecting concept drift for improving network intrusion detection

[1]  Mia Hubert,et al.  ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.

[2]  Charu C. Aggarwal,et al.  Efficient handling of concept drift and concept evolution over Stream Data , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[3]  Ralph R. Martin,et al.  Merging and Splitting Eigenspace Models , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Deniz Erdogmus,et al.  Perturbation-Based Eigenvector Updates for On-Line Principal Components Analysis and Canonical Correlation Analysis , 2006, J. VLSI Signal Process..

[5]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[6]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[7]  Tong Zhang,et al.  Near-optimal stochastic approximation for online principal component estimation , 2016, Math. Program..

[8]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[9]  S. Joe Qin,et al.  Multivariate process monitoring and fault diagnosis by multi-scale PCA , 2002 .

[10]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[11]  A. Ramos,et al.  PCA detection and denoising of Zeeman signatures in polarised stellar spectra , 2008, 0804.4692.

[12]  Yongmin Li,et al.  On incremental and robust subspace learning , 2004, Pattern Recognit..

[13]  Shie Mannor,et al.  Outlier-Robust PCA: The High-Dimensional Case , 2013, IEEE Transactions on Information Theory.

[14]  Salvatore J. Stolfo,et al.  Real time data mining-based intrusion detection , 2001, Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX'01.

[15]  Christophe Croux,et al.  High breakdown estimators for principal components: the projection-pursuit approach revisited , 2005 .

[16]  Ioannis Mitliagkas,et al.  Accelerated Stochastic Power Iteration , 2017, AISTATS.

[17]  Shadi Aljawarneh,et al.  Cloud security engineering: Early stages of SDLC , 2017, Future Gener. Comput. Syst..

[18]  Ohad Shamir,et al.  Convergence of Stochastic Gradient Descent for PCA , 2015, ICML.

[19]  S. Eisenstat,et al.  A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..

[20]  Manfred K. Warmuth,et al.  Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension , 2008 .

[21]  I. Jolliffe Principal Component Analysis and Factor Analysis , 1986 .

[22]  Juyang Weng,et al.  Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Haitao Zhao,et al.  A novel incremental principal component analysis and its application for face recognition , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  Namrata Vaswani,et al.  Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise , 2012, IEEE Transactions on Information Theory.

[25]  Yuefei Zhu,et al.  A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks , 2017, IEEE Access.

[26]  Yuanzhi Li,et al.  First Efficient Convergence for Streaming k-PCA: A Global, Gap-Free, and Near-Optimal Rate , 2016, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[27]  B. Weare,et al.  Examples of Extended Empirical Orthogonal Function Analyses , 1982 .

[28]  Shadi Aljawarneh,et al.  Investigations of automatic methods for detecting the polymorphic worms signatures , 2016, Future Gener. Comput. Syst..