A Mass Conservative Scheme for Fluid–Structure Interaction Problems by the Staggered Discontinuous Galerkin Method

In this paper, we develop a new mass conservative numerical scheme for the simulations of a class of fluid–structure interaction problems. We will use the immersed boundary method to model the fluid–structure interaction, while the fluid flow is governed by the incompressible Navier–Stokes equations. The immersed boundary method is proven to be a successful scheme to model fluid–structure interactions. To ensure mass conservation, we will use the staggered discontinuous Galerkin method to discretize the incompressible Navier–Stokes equations. The staggered discontinuous Galerkin method is able to preserve the skew-symmetry of the convection term. In addition, by using a local postprocessing technique, the weakly divergence free velocity can be used to compute a new postprocessed velocity, which is exactly divergence free and has a superconvergence property. This strongly divergence free velocity field is the key to the mass conservation. Furthermore, energy stability is improved by the skew-symmetric discretization of the convection term. We will present several numerical results to show the performance of the method.

[1]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[2]  L. Heltai,et al.  A finite element approach to the immersed boundary method , 2003 .

[3]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[4]  Bernardo Cockburn,et al.  Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..

[5]  Eric T. Chung,et al.  Convergence Analysis of Fully Discrete Finite Volume Methods for Maxwell's Equations in Nonhomogeneous Media , 2005, SIAM J. Numer. Anal..

[6]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions , 2009, SIAM J. Numer. Anal..

[7]  Dominik Schötzau,et al.  Exponential convergence of mixed hp-DGFEM for Stokes flow in polygons , 2003, Numerische Mathematik.

[8]  Chi-Wang Shu,et al.  A High-Order Discontinuous Galerkin Method for 2D Incompressible Flows , 2000 .

[9]  L. Heltai,et al.  Mathematical Models and Methods in Applied Sciences Vol. 17, No. 10 (17) 1479–1505 c ○ World Scientific Publishing Company NUMERICAL STABILITY OF THE FINITE ELEMENT IMMERSED BOUNDARY METHOD , 2005 .

[10]  Bernardo Cockburn,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[11]  Jay Gopalakrishnan,et al.  A Second Elasticity Element Using the Matrix Bubble , 2012 .

[12]  C. Ross Ethier,et al.  A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations , 2007, J. Comput. Phys..

[13]  Daniele Boffi,et al.  Discrete models for fluid-structure interactions: the Finite Element Immersed Boundary Method , 2014, 1407.5261.

[14]  Larry L. Schumaker,et al.  Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory , 2007 .

[15]  Eric T. Chung,et al.  The Staggered DG Method is the Limit of a Hybridizable DG Method. Part II: The Stokes Flow , 2015, Journal of Scientific Computing.

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  Raphaèle Herbin,et al.  A staggered finite volume scheme on general meshes for the generalized Stokes problem in two space dimensions AstaggeredschemefortheStokesequations , 2005 .

[18]  Paul Houston,et al.  A Mixed DG Method for Linearized Incompressible Magnetohydrodynamics , 2009, J. Sci. Comput..

[19]  Michael Dumbser,et al.  A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes , 2016, J. Comput. Phys..

[20]  Michael Dumbser,et al.  A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations , 2014, Appl. Math. Comput..

[21]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[22]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[23]  Eric T. Chung,et al.  Analysis of an SDG Method for the Incompressible Navier-Stokes Equations , 2017, SIAM J. Numer. Anal..

[24]  Eric T. Chung,et al.  A staggered discontinuous Galerkin method for the simulation of seismic waves with surface topography , 2015 .

[25]  B. J. Boersma,et al.  A staggered compact finite difference formulation for the compressible Navier-Stokes equations , 2005 .

[26]  Francisco-Javier Sayas,et al.  Analysis of HDG methods for Stokes flow , 2010, Math. Comput..

[27]  Eric T. Chung,et al.  Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell's equations on Cartesian grids , 2013, J. Comput. Phys..

[28]  Ray Luo,et al.  A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions , 2015, J. Comput. Phys..

[29]  Douglas N. Arnold,et al.  Quadratic velocity/linear pressure Stokes elements , 1992 .

[30]  Michael Dumbser,et al.  A staggered space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations on two-dimensional triangular meshes , 2014, 1412.1260.

[31]  Eric T. Chung,et al.  The Staggered DG Method is the Limit of a Hybridizable DG Method , 2014, SIAM J. Numer. Anal..

[32]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[33]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for Wave Propagation , 2006, SIAM J. Numer. Anal..

[34]  Ronald Fedkiw,et al.  The immersed interface method. Numerical solutions of PDEs involving interfaces and irregular domains , 2007, Math. Comput..

[35]  Qiang Du,et al.  Convergence Analysis of a Finite Volume Method for Maxwell's Equations in Nonhomogeneous Media , 2003, SIAM J. Numer. Anal..

[36]  C. Peskin,et al.  A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid , 1989 .

[37]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[38]  S. W. Cheung,et al.  Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations , 2015, J. Comput. Phys..

[39]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[40]  Eric T. Chung,et al.  A staggered discontinuous Galerkin method for the curl–curl operator , 2012 .

[41]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[42]  Eric T. Chung,et al.  FETI-DP preconditioners for a staggered discontinuous Galerkin formulation of the two-dimensional Stokes problem , 2014, Comput. Math. Appl..

[43]  Eric T. Chung,et al.  A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials , 2013, J. Comput. Appl. Math..

[44]  B. Wetton,et al.  Analysis of Stiffness in the Immersed Boundary Method and Implications for Time-Stepping Schemes , 1999 .

[45]  Eric T. Chung,et al.  A staggered discontinuous Galerkin method for the convection–diffusion equation , 2012, J. Num. Math..

[46]  Ke Shi,et al.  Conditions for superconvergence of HDG methods for Stokes flow , 2013, Math. Comput..

[47]  Eric T. Chung,et al.  A Staggered Discontinuous Galerkin Method for the Stokes System , 2013, SIAM J. Numer. Anal..

[48]  Guido Kanschat,et al.  A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..

[49]  Charles S. Peskin,et al.  Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries , 1993 .