Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications

The field of magnetic skyrmions has been actively investigated across a wide range of topics during the last decades. In this topical review, we mainly review and discuss key results and findings in skyrmion research since the first experimental observation of magnetic skyrmions in 2009. We particularly focus on the theoretical, computational and experimental findings and advances that are directly relevant to the spintronic applications based on magnetic skyrmions, i.e. their writing, deleting, reading and processing driven by magnetic field, electric current and thermal energy. We then review several potential applications including information storage, logic computing gates and non-conventional devices such as neuromorphic computing devices. Finally, we discuss possible future research directions on magnetic skyrmions, which also cover rich topics on other topological textures such as antiskyrmions and bimerons in antiferromagnets and frustrated magnets.

[1]  B. Shen,et al.  Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy , 2017, Advanced materials.

[2]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .

[3]  Yan Zhu,et al.  Direct observations of chiral spin textures in van der Waals magnet Fe3GeTe2 nanolayers , 2019, 1907.08382.

[4]  M. Klaui,et al.  Skyrmions and multisublattice helical states in a frustrated chiral magnet , 2016, 1610.02172.

[5]  F. Buttner,et al.  Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction , 2016, Nature Communications.

[6]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[7]  Huanhuan Yang,et al.  Twisted skyrmions at domain boundaries and the method of image skyrmions , 2017, Physical Review B.

[8]  Mark L. Vousden,et al.  Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures , 2013, Scientific Reports.

[9]  C. Pfleiderer,et al.  Emergent electrodynamics of skyrmions in a chiral magnet , 2012, Nature Physics.

[10]  H. Kawamura,et al.  Multiple-q states and the Skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. , 2011, Physical review letters.

[11]  S. Blügel,et al.  New spiral state and skyrmion lattice in 3D model of chiral magnets , 2016, 1601.05752.

[12]  H. Braun Topological Effects in Nanomagnetism: From Superparamagnetism to Chiral Quantum Solitons , 2012 .

[13]  Y. Zhou,et al.  Creation, transport and detection of imprinted magnetic solitons stabilized by spin-polarized current , 2016, Journal of Magnetism and Magnetic Materials.

[14]  S. Woo Elusive spin textures discovered , 2018, Nature.

[15]  W. A. Moura-Melo,et al.  Antiferromagnetic skyrmions overcoming obstacles in a racetrack , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  W. Yao,et al.  Skyrmions in the Moiré of van der Waals 2D Magnets. , 2018, Nano letters.

[17]  Y. Tokura,et al.  Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet , 2018, Science.

[18]  Michael D. Schneider,et al.  Dynamics and inertia of skyrmionic spin structures , 2015, Nature Physics.

[19]  Kang L. Wang,et al.  Direct observation of the skyrmion Hall effect , 2016, Nature Physics.

[20]  B. Diény,et al.  Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications , 2017 .

[21]  S. Komineas,et al.  Skyrmion dynamics in chiral ferromagnets , 2015, 1505.04377.

[22]  D. Wu,et al.  Creating an artificial two-dimensional Skyrmion crystal by nanopatterning. , 2013, Physical review letters.

[23]  Phenomenology of current-induced skyrmion motion in antiferromagnets , 2016, 1604.05712.

[24]  A. N. Bogdanov,et al.  Theory of vortex states in magnetic nanodisks with induced Dzyaloshinskii-Moriya interactions , 2009, 0906.5552.

[25]  Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets , 2002, cond-mat/0206291.

[26]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[27]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[28]  P. Sutcliffe,et al.  Skyrmion Knots in Frustrated Magnets. , 2017, Physical review letters.

[30]  F. Freimuth,et al.  Topological spin Hall effect in antiferromagnetic skyrmions , 2017, 1701.03030.

[31]  A. A. Fraerman,et al.  Skyrmion states in multilayer exchange coupled ferromagnetic nanostructures with distinct anisotropy directions , 2015 .

[32]  E. Pomarico,et al.  Laser-Induced Skyrmion Writing and Erasing in an Ultrafast Cryo-Lorentz Transmission Electron Microscope. , 2017, Physical review letters.

[33]  P. Sutcliffe,et al.  Hopfions in chiral magnets , 2018, Journal of Physics A: Mathematical and Theoretical.

[34]  P. Batson,et al.  The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. , 1978, Ultramicroscopy.

[35]  G. Finocchio,et al.  Skyrmion based microwave detectors and harvesting , 2015, 1510.03841.

[36]  A. Polyakov,et al.  Metastable States of Two-Dimensional Isotropic Ferromagnets , 1975 .

[37]  X. Liu,et al.  Dynamics of a magnetic skyrmionium driven by a spin wave. , 2018, 2018 IEEE International Magnetic Conference (INTERMAG).

[38]  U. Rößler,et al.  Chiral Skyrmionic matter in non-centrosymmetric magnets , 2010, 1009.4849.

[39]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[40]  H. W. Jiang,et al.  Experimental Observation of Single Skyrmion Signatures in a Magnetic Tunnel Junction. , 2019, Physical review letters.

[41]  H. Béa,et al.  Large-Voltage Tuning of Dzyaloshinskii-Moriya Interactions: A Route toward Dynamic Control of Skyrmion Chirality. , 2018, Nano letters.

[42]  R. Georgii,et al.  Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu 2 OSeO 3 , 2012, 1206.5220.

[43]  A. Bogdanov New localized solutions of the nonlinear field equations , 1995 .

[44]  Yoshio Watanabe,et al.  Writing a skyrmion on multiferroic materials , 2015, 1511.08433.

[45]  Jörg Raabe,et al.  Deterministic field-free skyrmion nucleation at a nano-engineered injector device. , 2019, Nano letters.

[46]  S. W. Lovesey,et al.  Theory of neutron scattering from condensed matter , 1984 .

[47]  Masahiro Sato,et al.  Encoding orbital angular momentum of light in magnets , 2016, 1612.00176.

[48]  A. Khorsand,et al.  Laser-induced magnetic nanostructures with tunable topological properties. , 2013, Physical review letters.

[49]  A. Hubert,et al.  The Properties of Isolated Magnetic Vortices , 1994 .

[50]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[51]  K. Khoo,et al.  Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. , 2016, Nature materials.

[52]  Di Wu,et al.  Tuning the stability and the skyrmion Hall effect in magnetic skyrmions by adjusting their exchange strengths with magnetic disks , 2017, Journal of Magnetism and Magnetic Materials.

[53]  G. Tsitsishvili,et al.  Skyrmion and bimeron excitations in bilayer quantum Hall systems , 2010 .

[54]  Gerhard Jakob,et al.  Thermal skyrmion diffusion used in a reshuffler device , 2018, Nature Nanotechnology.

[55]  S. Mangin,et al.  Creation of Magnetic Skyrmion Bubble Lattices by Ultrafast Laser in Ultrathin Films. , 2018, Nano letters.

[56]  S. Heinze,et al.  Engineering skyrmions in transition-metal multilayers for spintronics , 2015, Nature Communications.

[57]  P. Fischer,et al.  Synthesizing skyrmion bound pairs in Fe-Gd thin films , 2016, 1603.07882.

[58]  Yu-heng Zhang,et al.  Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks , 2016, Proceedings of the National Academy of Sciences.

[59]  Yan Zhou,et al.  Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy , 2017, 1706.06726.

[60]  Kaushik Roy,et al.  Magnetic Skyrmion as a Spintronic Deep Learning Spiking Neuron Processor , 2018, IEEE Transactions on Magnetics.

[61]  M. Cantoni,et al.  In Situ Electric Field Skyrmion Creation in Magnetoelectric Cu2OSeO3. , 2017, Nano letters.

[62]  Xubing Lu,et al.  Magnetic field gradient driven dynamics of isolated skyrmions and antiskyrmions in frustrated magnets , 2017, 1712.03550.

[63]  Ying Zhang,et al.  Multiple tuning of magnetic biskyrmions using in situ L-TEM in centrosymmetric MnNiGa alloy , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[64]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[65]  M. Kramer,et al.  Generation of high-density biskyrmions by electric current , 2017, npj Quantum Materials.

[66]  J. Henk,et al.  Magnetic bimerons as skyrmion analogues in in-plane magnets , 2018, Physical Review B.

[67]  Y. Tokura,et al.  Memory functions of magnetic skyrmions , 2015, 1501.07650.

[68]  S. Heinze,et al.  Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin–orbit torques , 2018, Nature Electronics.

[69]  Y. Wen,et al.  Creation of a thermally assisted skyrmion lattice in Pt/Co/Ta multilayer films , 2018, 1807.05335.

[70]  S. Blugel,et al.  Experimental observation of magnetic bobbers for a new concept of magnetic solid-state memory , 2017, 1706.04654.

[71]  H. Béa,et al.  The Skyrmion Switch: Turning Magnetic Skyrmion Bubbles on and off with an Electric Field. , 2016, Nano letters.

[72]  M. Mochizuki,et al.  Resonance modes and microwave-driven translational motion of a skyrmion crystal under an inclined magnetic field , 2018, Physical Review B.

[73]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[74]  A. N’Diaye,et al.  Room temperature skyrmion ground state stabilized through interlayer exchange coupling , 2015 .

[75]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[76]  Jeongmin Hong,et al.  Reconfigurable Skyrmion Logic Gates. , 2018, Nano letters.

[77]  Yan Zhou,et al.  Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films , 2017, Nature Communications.

[78]  Yan Zhou,et al.  High-topological-number magnetic skyrmions and topologically protected dissipative structure , 2015, 1505.00522.

[79]  R. Wiesendanger Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics , 2016 .

[80]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[81]  S. Blügel,et al.  Perpendicular reading of single confined magnetic skyrmions , 2015, Nature Communications.

[82]  H. Fangohr,et al.  Magnon-driven domain-wall motion with the Dzyaloshinskii-Moriya interaction. , 2014, Physical review letters.

[83]  H. Yuan,et al.  A theory on skyrmion size , 2018, 2018 IEEE International Magnetic Conference (INTERMAG).

[84]  J. C. Loudon,et al.  Three-dimensional chiral skyrmions with attractive interparticle interactions , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[85]  Yan Zhou,et al.  Dynamics of the antiferromagnetic skyrmion induced by a magnetic anisotropy gradient , 2018, Physical Review B.

[86]  J. C. Loudon,et al.  Do Images of Biskyrmions Show Type‐II Bubbles? , 2019, Advanced materials.

[87]  David W. McComb,et al.  Chiral bobbers and skyrmions in epitaxial FeGe/Si(111) films , 2017, 1706.08248.

[88]  A. Scholl,et al.  Topology of spin meron pairs in coupled Ni/Fe/Co/Cu(001) disks , 2016 .

[89]  Y. Tokura,et al.  Topological transitions among skyrmion- and hedgehog-lattice states in cubic chiral magnets , 2019, Nature Communications.

[90]  Y. Tokura,et al.  Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. , 2013, Nature nanotechnology.

[91]  J. Nývlt Nucleation , 1991 .

[92]  Yan Zhou,et al.  Current-Driven Dynamics of Frustrated Skyrmions in a Synthetic Antiferromagnetic Bilayer , 2018, Physical Review Applied.

[93]  Yu-heng Zhang,et al.  Enhanced Stability of the Magnetic Skyrmion Lattice Phase under a Tilted Magnetic Field in a Two-Dimensional Chiral Magnet. , 2017, Nano letters.

[94]  R. Lake,et al.  Topological charge analysis of ultrafast single skyrmion creation , 2014, 1411.7762.

[95]  N. Nagaosa,et al.  Dynamics of Skyrmion crystals in metallic thin films. , 2011, Physical review letters.

[96]  A. Hubert,et al.  Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .

[97]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.

[98]  G. Finocchio,et al.  Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots , 2017, 1706.07569.

[99]  Hans Fangohr,et al.  Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory , 2014, Scientific Reports.

[100]  R. Wiesendanger,et al.  The properties of isolated chiral skyrmions in thin magnetic films , 2015, 1508.02155.

[101]  Yong Peng,et al.  Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field , 2018 .

[102]  George Bourianoff,et al.  Potential implementation of reservoir computing models based on magnetic skyrmions , 2017, 1709.08911.

[103]  M. Ezawa Giant Skyrmions stabilized by dipole-dipole interactions in thin ferromagnetic films. , 2010, Physical review letters.

[104]  Yan Zhou,et al.  Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks , 2016, 1601.03893.

[105]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[106]  Y. Tokura,et al.  Robust formation of Skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. , 2012, Physical review letters.

[107]  Topological Hall effect and Berry phase in magnetic nanostructures. , 2003, Physical review letters.

[108]  Mark R. Dennis,et al.  Two-dimensional skyrmion bags in liquid crystals and ferromagnets , 2019, Nature Physics.

[109]  Michael A. McGuire,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[110]  Yan Zhou,et al.  Control and manipulation of a magnetic skyrmionium in nanostructures , 2016, 1604.05909.

[111]  Y. Tokura,et al.  Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. , 2013, Nano letters.

[112]  C. Pfleiderer,et al.  Modulated and localized structures in cubic helimagnets , 2005 .

[113]  U. Rößler,et al.  Chiral symmetry breaking in magnetic thin films and multilayers. , 2001, Physical review letters.

[114]  Hyunsoo Yang,et al.  Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy , 2017, Nature Communications.

[115]  Kang L. Wang,et al.  Room-Temperature Skyrmion Shift Device for Memory Application. , 2017, Nano letters.

[116]  Shizeng Lin,et al.  Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions , 2015, 1512.05012.

[117]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[118]  Y. Tokura,et al.  Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound , 2016, Nature Communications.

[119]  A. Samardak,et al.  Skyrmionium – high velocity without the skyrmion Hall effect , 2018, Scientific Reports.

[120]  H. Oepen,et al.  Magnetic Microscopy of Nanostructures , 2005 .

[121]  T. Skyrme A Unified Field Theory of Mesons and Baryons , 1962 .

[122]  A. Leonov,et al.  Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy , 2017, 1704.00100.

[123]  Yu-heng Zhang,et al.  Edge-mediated skyrmion chain and its collective dynamics in a confined geometry , 2015, Nature Communications.

[124]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[125]  A. D. Lucia,et al.  Multiscale simulations of topological transformations in magnetic-skyrmion spin structures , 2017, 1702.05767.

[126]  P. Grundy,et al.  Bubble domains in magnetostatically coupled garnet films , 1973 .

[127]  A. Saxena,et al.  Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy , 2014, 1406.1422.

[128]  Peng Yan,et al.  Photonic orbital angular momentum transfer and magnetic skyrmion rotation. , 2017, Optics express.

[129]  Paul J. Ackerman,et al.  Topological transformations of Hopf solitons in chiral ferromagnets and liquid crystals , 2018, Proceedings of the National Academy of Sciences.

[130]  T. Rasing,et al.  All-optical magnetic recording with circularly polarized light. , 2007, Physical review letters.

[131]  J. Atulasimha,et al.  Voltage controlled core reversal of fixed magnetic skyrmions without a magnetic field , 2016, Scientific Reports.

[132]  J. Miltat,et al.  Brownian motion of magnetic domain walls and skyrmions, and their diffusion constants , 2018, Physical Review B.

[133]  Yan Liu,et al.  Single antiferromagnetic skyrmion transistor based on strain manipulation , 2018, Applied Physics Letters.

[134]  Jörg Raabe,et al.  Current‐Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures , 2018, Advanced materials.

[135]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[136]  Yan Zhou,et al.  Title A reversible conversion between a skyrmion and a domain-wallpair in a junction geometry , 2014 .

[137]  Masahiro Sato,et al.  Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets , 2016, 1609.06816.

[138]  A. Fert,et al.  Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature , 2018, Nature Nanotechnology.

[139]  C. Pfleiderer,et al.  Unwinding of a Skyrmion Lattice by Magnetic Monopoles , 2013, Science.

[140]  N. Kiselev,et al.  Chiral magnetic skyrmions with arbitrary topological charge , 2018, Physical Review B.

[141]  Y. Tokura,et al.  Transformation between meron and skyrmion topological spin textures in a chiral magnet , 2018, Nature.

[142]  Denys Makarov,et al.  Magnetization dynamics of imprinted non-collinear spin textures , 2015 .

[143]  Hung T. Diep,et al.  Phase Transition in Frustrated Magnetic Thin Film—Physics at Phase Boundaries , 2018, Entropy.

[144]  Y. Tokura,et al.  Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3 , 2012, 1206.4404.

[145]  Roberto E. Troncoso,et al.  Brownian motion of massive skyrmions in magnetic thin films , 2014 .

[146]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[147]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[148]  A. Thiele Steady-State Motion of Magnetic Domains , 1973 .

[149]  S. Parkin,et al.  Chiral spin torque at magnetic domain walls. , 2013, Nature nanotechnology.

[150]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[151]  S. Urazhdin,et al.  Dynamical skyrmion state in a spin current nano-oscillator with perpendicular magnetic anisotropy. , 2013, Physical review letters.

[152]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[153]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.

[154]  Yan Zhou,et al.  Magnetic bilayer-skyrmions without skyrmion Hall effect , 2015, Nature Communications.

[155]  Yan Zhou,et al.  Magnetic skyrmion-based synaptic devices , 2016, Nanotechnology.

[156]  Z. F. Ezawa Quantum Hall Effects: Recent Theoretical and Experimental Developments , 2013 .

[157]  K. Inoue,et al.  Current-induced shuttlecock-like movement of non-axisymmetric chiral skyrmions , 2018, Scientific Reports.

[158]  M. Mochizuki,et al.  Universal current-velocity relation of skyrmion motion in chiral magnets , 2013, Nature Communications.

[159]  F. Humphrey,et al.  Bubble‐collapse and stripe‐chop mechanism in magnetic bubble garnet materials , 1977 .

[160]  R. E. Troncoso,et al.  Thermally assisted current-driven skyrmion motion , 2014, 1402.1501.

[161]  Kang L. Wang,et al.  Exchange-biasing topological charges by antiferromagnetism , 2018, Nature Communications.

[162]  Y. Tokura,et al.  Biskyrmion states and their current-driven motion in a layered manganite , 2014, Nature Communications.

[163]  Electric-field-driven switching of individual magnetic skyrmions. , 2016, Nature nanotechnology.

[164]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017 .

[165]  Yan Zhou,et al.  Skyrmions in Magnetic Tunnel Junctions. , 2018, ACS applied materials & interfaces.

[166]  F. Buttner,et al.  Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy , 2016, Nature Physics.

[167]  Seonghoon Woo Skyrmions learn some new moves , 2018, Nature Electronics.

[168]  Y. Tokura,et al.  Stability of two-dimensional skyrmions in thin films of Mn1−xFexSi investigated by the topological Hall effect , 2014 .

[169]  Carles Navau,et al.  Analytical trajectories of skyrmions in confined geometries: Skyrmionic racetracks and nano-oscillators , 2016 .

[170]  You-Quan Li,et al.  Dynamics of magnetic skyrmions , 2015 .

[171]  E. Fullerton,et al.  Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films , 2017, 1711.07101.

[172]  S. Blügel,et al.  Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states , 2016, Scientific Reports.

[173]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[174]  Yan Zhou Magnetic skyrmions: intriguing physics and new spintronic device concepts , 2018, National science review.

[175]  H. Dürr,et al.  Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins , 2011, Nature.

[176]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[177]  Carles Navau,et al.  Imprinting skyrmions in thin films by ferromagnetic and superconducting templates , 2014, 1407.0928.

[178]  A. Fert,et al.  Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces , 2016, Nature.

[179]  C. Marrows,et al.  Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer , 2015, Nature Communications.

[180]  Jie Wang Mechanical Control of Magnetic Order: From Phase Transition to Skyrmions , 2019, Annual Review of Materials Research.

[181]  G. Finocchio,et al.  Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion , 2016, 1610.00894.

[182]  N. Nagaosa,et al.  Creation of skyrmions and antiskyrmions by local heating , 2014, Nature Communications.

[183]  J. Han,et al.  Skyrmion Generation by Current , 2012, 1203.0638.

[184]  Y. Tokura,et al.  Noncentrosymmetric Magnets Hosting Magnetic Skyrmions , 2017, Advanced materials.

[185]  M. Marcus,et al.  Tailoring the topology of an artificial magnetic skyrmion , 2014, Nature Communications.

[186]  I. Dzyaloshinskiǐ THEORY OF HELICOIDAL STRUCTURES IN ANTIFERROMAGNETS. I. NONMETALS , 2013 .

[187]  Yan Zhou,et al.  Skyrmion-Electronics: An Overview and Outlook , 2016, Proceedings of the IEEE.

[188]  A. N. Bogdanov,et al.  Three-dimensional skyrmion states in thin films of cubic helimagnets , 2012, 1212.5970.

[189]  Young Sun,et al.  Real-Space Observation of Nonvolatile Zero-Field Biskyrmion Lattice Generation in MnNiGa Magnet. , 2017, Nano letters.

[190]  Yan Zhou,et al.  Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack , 2015, Scientific Reports.

[191]  O. Heinonen,et al.  Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents , 2015, 1511.04630.

[192]  T. Matsuda,et al.  Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. , 2012, Nano letters.

[193]  R. Wiesendanger,et al.  Field-dependent size and shape of single magnetic Skyrmions. , 2015, Physical review letters.

[194]  Y. Tokura,et al.  Unusual Hall effect anomaly in MnSi under pressure. , 2008, Physical review letters.

[195]  Yue Zheng,et al.  Realization of skyrmion subtracter and diverter in a voltage-gated synthetic antiferromagnetic racetrack , 2019, Journal of Applied Physics.

[196]  J. White,et al.  Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. , 2015, Nature materials.

[197]  I. Smalyukh,et al.  Static Hopf Solitons and Knotted Emergent Fields in Solid-State Noncentrosymmetric Magnetic Nanostructures. , 2018, Physical review letters.

[198]  Y. Tokura,et al.  Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice , 2016 .

[199]  Yan Zhou,et al.  Complementary Skyrmion Racetrack Memory With Voltage Manipulation , 2016, IEEE Electron Device Letters.

[200]  Mathias Kläui,et al.  Perspective: Magnetic skyrmions—Overview of recent progress in an active research field , 2018, Journal of Applied Physics.

[201]  A. S. Ovchinnikov,et al.  Chiral magnetic soliton lattice on a chiral helimagnet. , 2012, Physical review letters.

[202]  Gong Chen,et al.  Skyrmion Hall effect , 2017, Nature Physics.

[203]  A. Thiele,et al.  Theory of the Static Stability of Cylindrical Domains in Uniaxial Platelets , 1970 .

[204]  A. Kirilyuk,et al.  Ultrafast nonthermal photo-magnetic recording in transparent medium , 2016, Nature.

[205]  Ping Huang,et al.  Magnetic Skyrmions and Skyrmion Clusters in the Helical Phase of Cu_{2}OSeO_{3}. , 2017, Physical review letters.

[206]  Jingzhao Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[207]  H. Yuan,et al.  Skyrmion Creation and Manipulation by Nano-Second Current Pulses , 2016, Scientific Reports.

[208]  Qiming Shao,et al.  Highly Efficient Spin-Orbit Torque and Switching of Layered Ferromagnet Fe3GeTe2. , 2019, Nano letters.

[209]  M. Mochizuki,et al.  Dynamical magnetoelectric phenomena of multiferroic skyrmions , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[210]  Stuart Parkin,et al.  Memory on the racetrack. , 2015, Nature nanotechnology.

[211]  Yan Zhou,et al.  Magnetic skyrmion-based artificial neuron device , 2017, Nanotechnology.

[212]  Y. Mokrousov,et al.  Distinct magnetotransport and orbital fingerprints of chiral bobbers , 2018, Physical Review B.

[213]  Achim Rosch,et al.  Edge instabilities and skyrmion creation in magnetic layers , 2016, 1601.06922.

[214]  N. Nagaosa,et al.  Quantized topological Hall effect in skyrmion crystal , 2015, 1504.06024.

[215]  K. Everschor-Sitte,et al.  Asymmetric skyrmion Hall effect in systems with a hybrid Dzyaloshinskii-Moriya interaction , 2018, Physical Review B.

[216]  Anirban Mazumdar,et al.  Remote Distributed Vibration Sensing Through Opaque Media Using Permanent Magnets , 2018, IEEE Transactions on Magnetics.

[217]  A. Stashkevich,et al.  Current-induced skyrmion generation and dynamics in symmetric bilayers , 2016, Nature Communications.

[218]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[219]  Jacques Droulez,et al.  Skyrmion Gas Manipulation for Probabilistic Computing , 2017, Physical Review Applied.

[220]  M. Mochizuki,et al.  Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.

[221]  Xing Chen,et al.  A compact skyrmionic leaky-integrate-fire spiking neuron device. , 2018, Nanoscale.

[222]  Y. Fainman,et al.  All-optical control of ferromagnetic thin films and nanostructures , 2014, Science.

[223]  Yan Zhou,et al.  Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition , 2017, Nature Communications.

[224]  A. Manchon,et al.  Antiferromagnetic spintronics , 2016, 1606.04284.

[225]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[226]  Yong Peng,et al.  Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2 , 2019, Science Advances.

[227]  A. Vishwanath,et al.  Theory of the helical spin crystal: a candidate for the partially ordered state of MnSi. , 2006, Physical review letters.

[228]  Y. Tokura,et al.  Ultrafast optical excitation of magnetic skyrmions , 2015, Scientific Reports.

[229]  Yan Zhou,et al.  Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions , 2014, Scientific Reports.

[230]  Shizeng Lin Edge instability in a chiral stripe domain under an electric current and skyrmion generation , 2015, 1510.07353.

[231]  X. Xi,et al.  Observation of Magnetic Skyrmion Bubbles in a van der Waals ferromagnet Fe3GeTe2. , 2019, Nano letters.

[232]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[233]  Jiadong Zang,et al.  Binding a hopfion in a chiral magnet nanodisk , 2018, Physical Review B.

[234]  Shilei Zhang,et al.  Topological computation based on direct magnetic logic communication , 2015, Scientific Reports.

[235]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[236]  L. Blau Theory Of Neutron Scattering From Condensed Matter , 2016 .

[237]  S. Eisebitt,et al.  Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques. , 2017, Nature nanotechnology.

[238]  A. Vishwanath,et al.  Chirality induced anomalous-Hall effect in helical spin crystals , 2007, 0706.1841.

[239]  C. Chien,et al.  Extended Skyrmion phase in epitaxial FeGe(111) thin films. , 2012, Physical review letters.

[240]  M. Mostovoy,et al.  Target-skyrmions and skyrmion clusters in nanowires of chiral magnets , 2013, 1311.6283.

[241]  C. Reichhardt,et al.  Thermal creep and the skyrmion Hall angle in driven skyrmion crystals , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[242]  R. Stamps,et al.  Internal structure of hexagonal skyrmion lattices in cubic helimagnets , 2016, 1606.04681.

[243]  N. Nagaosa,et al.  Purely electrical detection of a skyrmion in constricted geometry , 2015, 1512.07965.

[244]  C. H. Back,et al.  Magnetic vortex core reversal by excitation with short bursts of an alternating field , 2006, Nature.

[245]  N. Nagaosa,et al.  Theory of antiskyrmions in magnets , 2016, Nature Communications.

[246]  Y. Wen,et al.  Determination of chirality and density control of Néel-type skyrmions with in-plane magnetic field , 2018, Communications Physics.

[247]  Cycloidal versus skyrmionic states in mesoscopic chiral magnets , 2016, 1606.02122.

[248]  U. Rößler,et al.  Chiral modulations and reorientation effects in MnSi thin films , 2012 .

[249]  J. White,et al.  A new class of chiral materials hosting magnetic skyrmions beyond room temperature , 2015, Nature communications.

[250]  M. Mostovoy,et al.  Edge states and skyrmion dynamics in nanostripes of frustrated magnets , 2016, Nature Communications.

[251]  M. Mochizuki,et al.  Magnetoelectric resonances and predicted microwave diode effect of the skyrmion crystal in a multiferroic chiral-lattice magnet , 2013, 1303.4491.

[252]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[253]  D. Pierce,et al.  Realization of ground-state artificial skyrmion lattices at room temperature , 2015, Nature Communications.

[254]  T. Nozaki,et al.  Brownian motion of skyrmion bubbles and its control by voltage applications , 2019, Applied Physics Letters.

[255]  M. Mostovoy,et al.  Bound States of Skyrmions and Merons near the Lifshitz Point. , 2017, Physical review letters.

[256]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.

[257]  Kang L. Wang,et al.  Electric-field guiding of magnetic skyrmions , 2015, 1505.03972.

[258]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[259]  M. Graef,et al.  Magnetic domain wall skyrmions , 2018, Physical Review B.

[260]  M. Vázquez,et al.  Magnetization pinning in modulated nanowires: from topological protection to the "corkscrew" mechanism. , 2018, Nanoscale.

[261]  Alemayehu S. Admasu,et al.  Patterning-Induced Ferromagnetism of Fe3GeTe2 van der Waals Materials beyond Room Temperature. , 2018, Nano letters.

[262]  Suzuki Takao,et al.  A study of magnetization distribution of submicron bubbles in sputtered Ho-Co thin films , 1983 .

[263]  H. Fangohr,et al.  Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots , 2015, 1503.02869.

[264]  J. Zang,et al.  Skyrmions in magnetic multilayers , 2017, 1706.08295.

[265]  A. Fert,et al.  Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions. , 2017, Nano letters.

[266]  H. Berger,et al.  Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet , 2018, Proceedings of the National Academy of Sciences.

[267]  Avadh Saxena,et al.  ac current generation in chiral magnetic insulators and Skyrmion motion induced by the spin Seebeck effect. , 2013, Physical review letters.

[268]  Y. Tokura,et al.  Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic , 2013, Nature Communications.

[269]  P. Fischer,et al.  Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy , 2017, Nature Communications.

[270]  J. Zang,et al.  Dynamics of an insulating Skyrmion under a temperature gradient. , 2013, Physical review letters.

[271]  R. Vasudevan,et al.  Topological Structures in Multiferroics – Domain Walls, Skyrmions and Vortices , 2016 .

[272]  Yan Liu,et al.  Switching of a target skyrmion by a spin-polarized current , 2015 .

[273]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[274]  S. Eisebitt,et al.  Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet , 2018, Nature Nanotechnology.

[275]  E. Linfield,et al.  Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs , 2017, Nature Nanotechnology.

[276]  F. Hu,et al.  A Centrosymmetric Hexagonal Magnet with Superstable Biskyrmion Magnetic Nanodomains in a Wide Temperature Range of 100–340 K , 2016, Advanced materials.

[277]  Pietro Burrascano,et al.  Electrical detection of single magnetic skyrmion at room temperature , 2017 .

[278]  R. Wiesendanger,et al.  Impact of the skyrmion spin texture on magnetoresistance , 2017, 1701.09077.

[279]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[280]  M. Mochizuki Controlled creation of nanometric skyrmions using external magnetic fields , 2017, 1809.04331.

[281]  J. Sinova,et al.  Spin Hall effects , 2015 .

[282]  A. Brataas,et al.  Current-Driven Dynamics of Magnetic Hopfions. , 2019, Physical review letters.

[283]  L. You,et al.  Motion of a skyrmionium driven by spin wave , 2018 .

[284]  Ke He,et al.  Dimensional Crossover-Induced Topological Hall Effect in a Magnetic Topological Insulator. , 2017, Physical review letters.

[285]  Chengkun Song,et al.  Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect , 2016 .

[286]  Yan Zhou,et al.  A microwave field-driven transistor-like skyrmionic device with the microwave current-assisted skyrmion creation , 2016, 1601.05559.

[287]  S. Heinze,et al.  Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. , 2015, Nature nanotechnology.

[288]  Y. Tokura,et al.  Topological Nernst effect in a three-dimensional skyrmion-lattice phase , 2013 .

[289]  Y. Tokura,et al.  Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer , 2016, Science Advances.

[290]  Merle,et al.  Ultrafast spin dynamics in ferromagnetic nickel. , 1996, Physical review letters.

[291]  P. Böni,et al.  Topological Hall effect in the A phase of MnSi. , 2009, Physical review letters.

[292]  M. Mostovoy,et al.  Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet , 2015, Nature Communications.

[293]  S. Komineas,et al.  Skyrmion dynamics in chiral ferromagnets , 2015, 1508.04821.

[294]  K. Khoo,et al.  Supplementary Information for Tunable Room Temperature Magnetic Skyrmions in Ir / Fe / Co / Pt Multilayers , 2017 .

[295]  A. N. Bogdanov,et al.  Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets , 1989 .

[296]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[297]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[298]  G. Tsitsishvili,et al.  Skyrmion and Bimeron Excitations in Imbalanced Bilayer Quantum Hall Systems , 2011 .

[299]  C. Felser,et al.  Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.

[300]  Simone Finizio,et al.  Magnetic skyrmion artificial synapse for neuromorphic computing , 2019, ArXiv.

[301]  S. Heinze,et al.  Enhanced skyrmion stability due to exchange frustration , 2017, Scientific Reports.

[302]  Teng Yang,et al.  Flower-like dynamics of coupled Skyrmions with dual resonant modes by a single-frequency microwave magnetic field , 2014, Scientific Reports.

[303]  Y. Nakatani,et al.  Voltage-controlled magnetic skyrmions in magnetic tunnel junctions , 2019, Applied Physics Express.

[304]  W. Marsden I and J , 2012 .

[305]  Yan Zhou,et al.  Antiferromagnetic Skyrmion: Stability, Creation and Manipulation , 2015, Scientific Reports.

[306]  Qingfang Liu,et al.  Current-induced magnetic skyrmions oscillator , 2015 .

[307]  C. Reichhardt,et al.  Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review , 2016, Reports on progress in physics. Physical Society.

[308]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[309]  M. Randeria,et al.  Skyrmions in chiral magnets with Rashba and Dresselhaus spin-orbit coupling , 2015, 1509.07508.

[310]  Benjamin Krueger,et al.  Magnetic Skyrmion as a Nonlinear Resistive Element: A Potential Building Block for Reservoir Computing , 2017, 1702.04298.

[311]  H. Jónsson,et al.  Lifetime of racetrack skyrmions , 2018, Scientific Reports.

[312]  G. Finocchio,et al.  Magnetic skyrmions: from fundamental to applications , 2016 .

[313]  Yan Zhou,et al.  Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles. , 2017, Nano letters.

[314]  Yimei Zhu,et al.  Topological magnetic-spin textures in two-dimensional van der Waals Cr2Ge2Te6. , 2019, Nano letters.

[315]  H. De,et al.  Differential Phase Contrast in a STEM , 2022 .

[316]  Sebastian Doniach,et al.  Phase transitions with spontaneous modulation-the dipolar Ising ferromagnet , 1982 .

[317]  Y. Tokura,et al.  Large topological Hall effect in a short-period helimagnet MnGe. , 2011, Physical review letters.

[318]  Qingfang Liu,et al.  Static property and current-driven precession of 2π-vortex in nano-disk with Dzyaloshinskii-Moriya interaction , 2015 .

[319]  Takeshi Ogasawara,et al.  Submicron-scale spatial feature of ultrafast photoinduced magnetization reversal in TbFeCo thin film , 2009 .

[320]  Alexander Mook,et al.  Antiferromagnetic skyrmion crystals: Generation, topological Hall, and topological spin Hall effect , 2017, 1707.05267.

[321]  Yan Zhou,et al.  Skyrmion Domain Wall Collision and Domain Wall-Gated Skyrmion Logic , 2016, 1604.01310.

[322]  Zyun F. Ezawa Quantum Hall Effects , 2008 .

[323]  Kang L. Wang,et al.  Room-Temperature Creation and Spin-Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry. , 2016, Nano letters.

[324]  A. Kovalev,et al.  Stability of skyrmion lattices and symmetries of quasi-two-dimensional chiral magnets , 2015, 1510.04262.

[325]  R. Wiesendanger,et al.  Direct Observation of Internal Spin Structure of Magnetic Vortex Cores , 2002, Science.

[326]  V. Alfaro,et al.  A new classical solution of the Yang-Mills field equations , 1976 .

[327]  S. Rohart,et al.  Micromagnetics of anti-skyrmions in ultrathin films , 2017, 1712.04743.

[328]  Kang L. Wang,et al.  N\'eel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. , 2019, 1907.11349.

[329]  J. Slonczewski,et al.  Magnetic domain walls in bubble materials , 1979 .

[330]  Y. Liu,et al.  Topological analysis of spin-torque driven magnetic skyrmion formation , 2016 .

[331]  A. Fert,et al.  A transmission electron microscope study of Néel skyrmion magnetic textures in multilayer thin film systems with large interfacial chiral interaction , 2018, Scientific Reports.

[332]  D. Maclaren,et al.  Aberration corrected Lorentz scanning transmission electron microscopy. , 2015, Ultramicroscopy.

[333]  F. Kronast,et al.  Real-Space Observation of Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure. , 2018, Nano letters.

[334]  R. Wiesendanger,et al.  Controlled creation and stability of kπ skyrmions on a discrete lattice , 2018, Physical Review B.

[335]  Naoya Shibata,et al.  Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice , 2016, Science Advances.

[336]  S. Blügel,et al.  Experimental observation of chiral magnetic bobbers in B20-type FeGe , 2017, Nature Nanotechnology.

[337]  Alexey A. Kovalev,et al.  Skyrmions and Antiskyrmions in Quasi-Two-Dimensional Magnets , 2018, Front. Phys..

[338]  Alexey A. Kovalev,et al.  Boundary twists, instabilities, and creation of skyrmions and antiskyrmions , 2018, Physical Review Materials.

[339]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[340]  Shenmin Zhang,et al.  Creation of artificial skyrmions and antiskyrmions by anisotropy engineering , 2016, Scientific Reports.

[341]  A. Saxena,et al.  Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep , 2013, 1302.6205.

[342]  J. Liu,et al.  Skyrmions : Topological Structures, Properties, and Applications , 2016 .

[343]  J. Barker,et al.  Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature. , 2015, Physical review letters.

[344]  D. Ralph,et al.  Interface-Induced Phenomena in Magnetism. , 2016, Reviews of modern physics.

[345]  Arata Tsukamoto,et al.  Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet , 2018, Nature Nanotechnology.

[346]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[347]  A. Hubert,et al.  The stability of vortex-like structures in uniaxial ferromagnets , 1999 .

[348]  Wei Ning,et al.  Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires , 2015, Nature communications.

[349]  D. Grundler,et al.  Collective spin excitations of helices and magnetic skyrmions: review and perspectives of magnonics in non-centrosymmetric magnets , 2017, 1702.03668.

[350]  R. Duine,et al.  Current-induced rotational torques in the skyrmion lattice phase of chiral magnets , 2011, 1103.5548.

[351]  Eugene M. Chudnovsky,et al.  Writing skyrmions with a magnetic dipole , 2018, Journal of Applied Physics.