The stochastic thermodynamics of a rotating Brownian particle in a gradient flow

We compute the entropy production engendered in the environment from a single Brownian particle which moves in a gradient flow, and show that it corresponds in expectation to classical near-equilibrium entropy production in the surrounding fluid with specific mesoscopic transport coefficients. With temperature gradient, extra terms are found which result from the nonlinear interaction between the particle and the non-equilibrated environment. The calculations are based on the fluctuation relations which relate entropy production to the probabilities of stochastic paths and carried out in a multi-time formalism.

[1]  E. N. Ivanov,et al.  Rotational Brownian motion , 1973 .

[2]  Jan K. G. Dhont,et al.  An introduction to dynamics of colloids , 1996 .

[3]  Stefano Bo,et al.  Entropy Production in Stochastic Systems with Fast and Slow Time-Scales , 2014 .

[4]  Ralf Eichhorn,et al.  Anomalous thermodynamics at the microscale. , 2012, Physical review letters.

[5]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[6]  Matteo Pasquali,et al.  Brownian Motion of Stiff Filaments in a Crowded Environment , 2010, Science.

[7]  N. Mavromatos,et al.  LECT NOTES PHYS , 2002 .

[9]  Andrea Mazzino,et al.  Eddy diffusivities of inertial particles under gravity , 2011, Journal of Fluid Mechanics.

[10]  R. Hentschke Non-Equilibrium Thermodynamics , 2014 .

[11]  S. Orszag,et al.  Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. , 1999 .

[12]  P. Zweifel Advanced Mathematical Methods for Scientists and Engineers , 1980 .

[13]  J. Lebowitz,et al.  A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics , 1998, cond-mat/9811220.

[14]  M. Raizen,et al.  Measurement of the Instantaneous Velocity of a Brownian Particle , 2010, Science.

[15]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[16]  D. Woessner,et al.  Nuclear Spin Relaxation in Ellipsoids Undergoing Rotational Brownian Motion , 1962 .

[17]  Stephen R. Williams,et al.  Fluctuation theorems. , 2007, Annual review of physical chemistry.

[18]  M. Maxey The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields , 1987, Journal of Fluid Mechanics.

[19]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[20]  Udo Seifert Entropy production along a stochastic trajectory and an integral fluctuation theorem. , 2005, Physical review letters.

[21]  Shin-ichi Sasa,et al.  Stochastic energetics of non-uniform temperature systems , 1998 .

[22]  Thomas Speck,et al.  Role of external flow and frame invariance in stochastic thermodynamics. , 2007, Physical review letters.

[23]  Jorge Kurchan,et al.  Fluctuation theorem for stochastic dynamics , 1998 .

[24]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[25]  M. Esposito Stochastic thermodynamics under coarse graining. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Kai Sun,et al.  Brownian motion of boomerang colloidal particles. , 2013, Physical review letters.

[27]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[28]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[29]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[30]  Marco Avellaneda,et al.  Scalar transport in compressible flow , 1996, chao-dyn/9612001.

[31]  M. Esposito,et al.  Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems , 2008, 0811.3717.

[32]  G. Falkovich,et al.  Intermittent distribution of inertial particles in turbulent flows. , 2001, Physical review letters.

[33]  K. Gawȩdzki,et al.  Fluctuation Relations for Diffusion Processes , 2007, 0707.2725.

[34]  A Vulpiani,et al.  Multiple-scale analysis and renormalization for preasymptotic scalar transport. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  M. Nobili,et al.  Brownian Motion of an Ellipsoid , 2006, Science.