Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning.

The development of camouflage methods, often through a general resemblance to the background, has recently become a subject of intense research. However, an artificial, active camouflage that provides fast response to color change in the full-visible range for rapid background matching remains a daunting challenge. To this end, we report a method, based on the combination of bimetallic nanodot arrays and electrochemical bias, to allow for plasmonic modulation. Importantly, our approach permits real-time light manipulation readily matchable to the color setting in a given environment. We utilize this capability to fabricate a biomimetic mechanical chameleon and an active matrix display with dynamic color rendering covering almost the entire visible region.

[1]  Xian Huang,et al.  Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins , 2014, Proceedings of the National Academy of Sciences.

[2]  S. Aspengren,et al.  Rapid color change in fish and amphibians – function, regulation, and emerging applications , 2013, Pigment cell & melanoma research.

[3]  Xiang Zhang,et al.  A carpet cloak for visible light. , 2011, Nano letters.

[4]  M. Milinkovitch,et al.  Photonic crystals cause active colour change in chameleons , 2015, Nature Communications.

[5]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[6]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[7]  Color and texture morphing with colloids on multilayered surfaces. , 2015, ACS applied materials & interfaces.

[8]  Sheng Chu,et al.  Widely Adjustable and Quasi‐Reversible Electrochromic Device Based on Core–Shell Au–Ag Plasmonic Nanoparticles , 2014 .

[9]  R. Gans,et al.  Über die Form ultramikroskopischer Goldteilchen , 1912 .

[10]  Ernst Lueder Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects , 2001 .

[11]  J. Jacobson,et al.  An electrophoretic ink for all-printed reflective electronic displays , 1998, Nature.

[12]  J. P. Ziegler Status of reversible electrodeposition electrochromic devices , 1999 .

[13]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[14]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[15]  P. Alsing,et al.  Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. , 2005, Nano letters.

[16]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[17]  Peter Nordlander,et al.  Vivid, full-color aluminum plasmonic pixels , 2014, Proceedings of the National Academy of Sciences.

[18]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[19]  J. Heikenfeld,et al.  A first demonstration and analysis of the biprimary color system for reflective displays , 2014 .

[20]  Younan Xia,et al.  Gold Nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications , 2007 .

[21]  Tim Koch,et al.  Review Paper: A critical review of the present and future prospects for electronic paper , 2011 .

[22]  T. Yoon,et al.  Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection. , 2010, Optics express.

[23]  Stephen A. Morin,et al.  Camouflage and Display for Soft Machines , 2012, Science.

[24]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[25]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[26]  A. Oldenburg,et al.  Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles. , 2011, Small.

[27]  Martin Wegener,et al.  Invisibility cloaking in a diffusive light scattering medium , 2014, Science.

[28]  S. Asher,et al.  Nanogel nanosecond photonic crystal optical switching. , 2004, Journal of the American Chemical Society.

[29]  P. Somani,et al.  Electrochromic materials and devices: present and future , 2003, Materials Chemistry and Physics.

[30]  André C. Arsenault,et al.  Photonic-crystal full-colour displays , 2007 .

[31]  N. Kobayashi,et al.  A Localized Surface Plasmon Resonance‐Based Multicolor Electrochromic Device with Electrochemically Size‐Controlled Silver Nanoparticles , 2013, Advanced materials.

[32]  Ryan C Hayward,et al.  Photonic Multilayer Sensors from Photo‐Crosslinkable Polymer Films , 2012, Advanced materials.