暂无分享,去创建一个
[1] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[2] Amirhossein Taghvaei,et al. 2-Wasserstein Approximation via Restricted Convex Potentials with Application to Improved Training for GANs , 2019, ArXiv.
[3] Sewoong Oh,et al. Optimal transport mapping via input convex neural networks , 2019, ICML.
[4] Dimitris Samaras,et al. A Two-Step Computation of the Exact GAN Wasserstein Distance , 2018, ICML.
[5] Hongyuan Zha,et al. On Scalable and Efficient Computation of Large Scale Optimal Transport , 2019, ICML.
[6] Gabriel Peyré,et al. Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..
[7] Tyler Maunu,et al. Gradient descent algorithms for Bures-Wasserstein barycenters , 2020, COLT.
[8] Justin Solomon,et al. Stochastic Wasserstein Barycenters , 2018, ICML.
[9] David B. Dunson,et al. Scalable Bayes via Barycenter in Wasserstein Space , 2015, J. Mach. Learn. Res..
[10] Tryphon T. Georgiou,et al. Optimal Transport for Gaussian Mixture Models , 2017, IEEE Access.
[11] Tryphon T. Georgiou,et al. Distances and Riemannian Metrics for Multivariate Spectral Densities , 2011, IEEE Transactions on Automatic Control.
[12] Steffen Borgwardt,et al. Discrete Wasserstein barycenters: optimal transport for discrete data , 2015, Mathematical Methods of Operations Research.
[13] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[14] Justin Solomon,et al. Parallel Streaming Wasserstein Barycenters , 2017, NIPS.
[15] Vage Egiazarian,et al. Wasserstein-2 Generative Networks , 2019, ICLR.
[16] Hongkang Yang,et al. Clustering, factor discovery and optimal transport. , 2019 .
[17] Yoshua Bengio,et al. Generative Adversarial Nets , 2014, NIPS.
[18] Yuanyuan Shi,et al. Optimal Control Via Neural Networks: A Convex Approach , 2018, ICLR.
[19] C. Villani. Topics in Optimal Transportation , 2003 .
[20] J. A. Cuesta-Albertos,et al. A fixed-point approach to barycenters in Wasserstein space , 2015, 1511.05355.
[21] Johan Karlsson,et al. Tracking and Sensor Fusion in Direction of Arrival Estimation Using Optimal Mass Transport , 2018, 2018 26th European Signal Processing Conference (EUSIPCO).
[22] Aaron C. Courville,et al. Adversarial Computation of Optimal Transport Maps , 2019, ArXiv.
[23] Lei Xu,et al. Input Convex Neural Networks : Supplementary Material , 2017 .
[24] Baoxin Li,et al. Variational Wasserstein Barycenters for Geometric Clustering , 2020, ArXiv.
[25] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[26] Léon Bottou,et al. Wasserstein GAN , 2017, ArXiv.
[27] Arnaud Doucet,et al. Fast Computation of Wasserstein Barycenters , 2013, ICML.
[28] Esteban G. Tabak,et al. Sample‐Based Optimal Transport and Barycenter Problems , 2019, Communications on Pure and Applied Mathematics.
[29] Julien Rabin,et al. Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.
[30] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[31] Volkan Cevher,et al. WASP: Scalable Bayes via barycenters of subset posteriors , 2015, AISTATS.
[32] Nicolas Courty,et al. Large Scale Optimal Transport and Mapping Estimation , 2017, ICLR.
[33] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[34] Marco Cuturi,et al. Computational Optimal Transport , 2019 .