Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks

Wasserstein Barycenter is a principled approach to represent the weighted mean of a given set of probability distributions, utilizing the geometry induced by optimal transport. In this work, we present a novel scalable algorithm to approximate the Wasserstein Barycenters aiming at high-dimensional applications in machine learning. Our proposed algorithm is based on the Kantorovich dual formulation of the 2-Wasserstein distance as well as a recent neural network architecture, input convex neural network, that is known to parametrize convex functions. The distinguishing features of our method are: i) it only requires samples from the marginal distributions; ii) unlike the existing semi-discrete approaches, it represents the Barycenter with a generative model; iii) it allows to compute the barycenter with arbitrary weights after one training session. We demonstrate the efficacy of our algorithm by comparing it with the state-of-art methods in multiple experiments.

[1]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[2]  Amirhossein Taghvaei,et al.  2-Wasserstein Approximation via Restricted Convex Potentials with Application to Improved Training for GANs , 2019, ArXiv.

[3]  Sewoong Oh,et al.  Optimal transport mapping via input convex neural networks , 2019, ICML.

[4]  Dimitris Samaras,et al.  A Two-Step Computation of the Exact GAN Wasserstein Distance , 2018, ICML.

[5]  Hongyuan Zha,et al.  On Scalable and Efficient Computation of Large Scale Optimal Transport , 2019, ICML.

[6]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[7]  Tyler Maunu,et al.  Gradient descent algorithms for Bures-Wasserstein barycenters , 2020, COLT.

[8]  Justin Solomon,et al.  Stochastic Wasserstein Barycenters , 2018, ICML.

[9]  David B. Dunson,et al.  Scalable Bayes via Barycenter in Wasserstein Space , 2015, J. Mach. Learn. Res..

[10]  Tryphon T. Georgiou,et al.  Optimal Transport for Gaussian Mixture Models , 2017, IEEE Access.

[11]  Tryphon T. Georgiou,et al.  Distances and Riemannian Metrics for Multivariate Spectral Densities , 2011, IEEE Transactions on Automatic Control.

[12]  Steffen Borgwardt,et al.  Discrete Wasserstein barycenters: optimal transport for discrete data , 2015, Mathematical Methods of Operations Research.

[13]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[14]  Justin Solomon,et al.  Parallel Streaming Wasserstein Barycenters , 2017, NIPS.

[15]  Vage Egiazarian,et al.  Wasserstein-2 Generative Networks , 2019, ICLR.

[16]  Hongkang Yang,et al.  Clustering, factor discovery and optimal transport. , 2019 .

[17]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[18]  Yuanyuan Shi,et al.  Optimal Control Via Neural Networks: A Convex Approach , 2018, ICLR.

[19]  C. Villani Topics in Optimal Transportation , 2003 .

[20]  J. A. Cuesta-Albertos,et al.  A fixed-point approach to barycenters in Wasserstein space , 2015, 1511.05355.

[21]  Johan Karlsson,et al.  Tracking and Sensor Fusion in Direction of Arrival Estimation Using Optimal Mass Transport , 2018, 2018 26th European Signal Processing Conference (EUSIPCO).

[22]  Aaron C. Courville,et al.  Adversarial Computation of Optimal Transport Maps , 2019, ArXiv.

[23]  Lei Xu,et al.  Input Convex Neural Networks : Supplementary Material , 2017 .

[24]  Baoxin Li,et al.  Variational Wasserstein Barycenters for Geometric Clustering , 2020, ArXiv.

[25]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[26]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[27]  Arnaud Doucet,et al.  Fast Computation of Wasserstein Barycenters , 2013, ICML.

[28]  Esteban G. Tabak,et al.  Sample‐Based Optimal Transport and Barycenter Problems , 2019, Communications on Pure and Applied Mathematics.

[29]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[30]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..

[31]  Volkan Cevher,et al.  WASP: Scalable Bayes via barycenters of subset posteriors , 2015, AISTATS.

[32]  Nicolas Courty,et al.  Large Scale Optimal Transport and Mapping Estimation , 2017, ICLR.

[33]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[34]  Marco Cuturi,et al.  Computational Optimal Transport , 2019 .