On the modulo 2n+1 multiplication for diminished-1 operands

In this work we propose an enhancement to one of the most efficient modulo 2n +1 multipliers for diminished-1 operands already published. This improvement is achieved by reducing the partial products from n + 3 to n +1 . The derived partial products are reduced by a tree carry save adder architecture to two operands, which are finally added by a modulo 2n +1 diminished-1 adder. Our multipliers compared to existing implementations offer enhanced operation speed and have reduced area complexity.

[1]  Michael A. Soderstrand,et al.  Residue number system arithmetic: modern applications in digital signal processing , 1986 .

[2]  Akhilesh Tyagi,et al.  A Reduced-Area Scheme for Carry-Select Adders , 1993, IEEE Trans. Computers.

[3]  Yutai Ma A Slimplified Architecture for Modulo (2n + 1) Multiplication , 1998, IEEE Trans. Computers.

[4]  Reto Zimmermann,et al.  Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).

[5]  Haridimos T. Vergos,et al.  Fast parallel-prefix modulo 2/sup n/+1 adders , 2004, IEEE Transactions on Computers.

[6]  Haridimos T. Vergos,et al.  Design of efficient modulo 2n+1 multipliers , 2007, IET Comput. Digit. Tech..

[7]  Akhilesh Tyagi,et al.  A reduced area scheme for carry-select adders , 1990, Proceedings., 1990 IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[8]  Haridimos T. Vergos,et al.  Diminished-One Modulo 2n+1 Adder Design , 2002, IEEE Trans. Computers.

[9]  Giorgos Dimitrakopoulos,et al.  Efficient diminished-1 modulo 2/sup n/ + 1 multipliers , 2005, IEEE Transactions on Computers.

[10]  Laurent Imbert,et al.  a full RNS implementation of RSA , 2004, IEEE Transactions on Computers.

[11]  Haridimos T. Vergos,et al.  Modulo 2n±1 Adder Design Using Select-Prefix Blocks , 2003, IEEE Trans. Computers.

[12]  Ricardo Chaves,et al.  RDSP: a RISC DSP based on residue number system , 2003, Euromicro Symposium on Digital System Design, 2003. Proceedings..

[13]  T VergosHaridimos,et al.  Efficient Diminished-1 Modulo 2^n+1 Multipliers , 2005 .

[14]  L. Leibowitz A simplified binary arithmetic for the Fermat number transform , 1976 .

[15]  MaYutai A Simplified Architecture for Modulo (2n + 1) Multiplication , 1998 .

[16]  L. Sousa,et al.  A universal architecture for designing efficient modulo 2/sup n/+1 multipliers , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Ricardo Chaves,et al.  Improving residue number system multiplication with more balanced moduli sets and enhanced modular arithmetic structures , 2007, IET Comput. Digit. Tech..

[18]  Wolfgang Fichtner,et al.  A 177 Mb/s VLSI implementation of the International Data Encryption Algorithm , 1994 .

[19]  W. C. Miller,et al.  An Efficient Tree Architecture for Modulo 2 n + 1 Multiplication Journal of VLSI Signal Processing , 1996 .

[20]  P. V. Mohan,et al.  Residue Number Systems: Algorithms and Architectures , 2011 .

[21]  Haridimos T. Vergos,et al.  Handling zero in diminished-one modulo 2 n + 1 adders , 2003 .

[22]  Janne Heikkilä,et al.  Video filtering with Fermat number theoretic transforms using residue number system , 2006, IEEE Transactions on Circuits and Systems for Video Technology.