Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals.

The kinetics of cadmium selenide (CdSe) nanocrystal formation was studied using UV-visible absorption spectroscopy integrated with an automated, high-throughput synthesis platform. Reaction of anhydrous cadmium octadecylphosphonate (Cd-ODPA) with alkylphosphine selenides (1, tri-n-octylphosphine selenide; 2, di-n-butylphenylphosphine selenide; 3, n-butyldiphenylphosphine selenide) in recrystallized tri-n-octylphosphine oxide was monitored by following the absorbance of CdSe at λ = 350 nm, where the extinction coefficient is independent of size, and the disappearance of the selenium precursor using {(1)H}(31)P NMR spectroscopy. Our results indicate that precursor conversion limits the rate of nanocrystal nucleation and growth. The initial precursor conversion rate (Q(o)) depends linearly on [1] (Q(o)(1) = 3.0-36 μM/s) and decreases as the number of aryl groups bound to phosphorus increases (1 > 2 > 3). Changes to Q(o) influence the final number of nanocrystals and thus control particle size. Using similar methods, we show that changing [ODPA] has a negligible influence on precursor reactivity while increasing the growth rate of nuclei, thereby decreasing the final number of nanocrystals. These results are interpreted in light of a mechanism where the precursors react in an irreversible step that supplies the reaction medium with a solute form of the semiconductor.

[1]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[2]  A. Alivisatos,et al.  Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. , 2007, Journal of the American Chemical Society.

[3]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[4]  L. Manna,et al.  Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. , 2006, Journal of the American Chemical Society.

[5]  K. Jensen,et al.  A Continuous‐Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals , 2003 .

[6]  M. Bawendi,et al.  Mechanistic insights into the formation of InP quantum dots. , 2009, Angewandte Chemie.

[7]  Darrick J. Williams,et al.  A reduction pathway in the synthesis of PbSe nanocrystal quantum dots. , 2009, Journal of the American Chemical Society.

[8]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[9]  M. Bawendi,et al.  On the mechanism of lead chalcogenide nanocrystal formation. , 2006, Journal of the American Chemical Society.

[10]  P. Mulvaney,et al.  Nucleation and growth kinetics of CdSe nanocrystals in octadecene , 2004 .

[11]  Moungi G. Bawendi,et al.  On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots , 2002 .

[12]  B. Reinhard,et al.  Sulfidation of cadmium at the nanoscale. , 2008, ACS nano.

[13]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[14]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[15]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[16]  Xiaogang Peng,et al.  In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals , 2004 .

[17]  T. Sugimoto Preparation of monodispersed colloidal particles , 1987 .

[18]  A. P. Alivisatos,et al.  Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods , 2001 .

[19]  Early stages of ZnS growth studied by stopped-flow UV absorption spectroscopy: effects of educt concentrations on the nanoparticle formation. , 2006, The journal of physical chemistry. B.

[20]  Christopher M. Evans,et al.  Mysteries of TOPSe revealed: insights into quantum dot nucleation. , 2010, Journal of the American Chemical Society.

[21]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[22]  Gang Han,et al.  Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. , 2010, Nano letters.

[23]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[24]  Paul Mulvaney,et al.  Nucleation and growth of CdSe nanocrystals in a binary ligand system. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[25]  C. Dushkin,et al.  Early time ripening during the growth of CdSe nanocrystals in liquid paraffin , 2008 .

[26]  Xiaogang Peng,et al.  Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals. , 2009, Journal of the American Chemical Society.

[27]  Axel Günther,et al.  A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. , 2005, Angewandte Chemie.

[28]  Yongan Yang,et al.  Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor. , 2008, Angewandte Chemie.

[29]  D. Sarma,et al.  Growth kinetics of ZnO nanocrystals: a few surprises. , 2007, Journal of the American Chemical Society.

[30]  Dirk Poelman,et al.  Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots , 2007 .

[31]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[32]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[33]  T. D. Harris,et al.  Surface derivatization and isolation of semiconductor cluster molecules , 1988 .

[34]  R. Finke,et al.  Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters. , 2008, Journal of colloid and interface science.

[35]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[36]  Yu Zhang,et al.  Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals. , 2009, ACS nano.

[37]  Xiaogang Peng,et al.  Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. , 2002, Angewandte Chemie.

[38]  V. Lynch,et al.  Synthesis, structural characterization, and intercalation chemistry of two layered cadmium organophosphonates , 1993 .

[39]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[40]  H. Yoshimura,et al.  Fine control of the growth and optical properties of CdSe quantum dots by varying the amount of stearic acid in a liquid paraffin matrix , 2008 .

[41]  Richard A. Mathies,et al.  Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors , 2003 .

[42]  W. Buhro,et al.  The trouble with TOPO; identification of adventitious impurities beneficial to the growth of cadmium selenide quantum dots, rods, and wires. , 2008, Nano letters.

[43]  J. Kao,et al.  Spectroscopic identification of tri-n-octylphosphine oxide (TOPO) impurities and elucidation of their roles in cadmium selenide quantum-wire growth. , 2009, Journal of the American Chemical Society.

[44]  E. Rizzardo,et al.  High Activity Phosphine-Free Selenium Precursor Solution for Semiconductor Nanocrystal Growth , 2010 .

[45]  A. Alivisatos,et al.  Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces. , 2008, Journal of the American Chemical Society.

[46]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[47]  P. Liljeroth,et al.  Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. , 2005, Chemical Society reviews.

[48]  M. Steigerwald,et al.  Organometallic synthesis of II-VI semiconductors. 1. Formation and decomposition of bis(organotelluro)mercury and bis(organotelluro)cadmium compounds , 1987 .

[49]  T. Sugimoto Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution II: silver bromide , 2000 .

[50]  M. Bawendi,et al.  Electroluminescence from CdSe quantum‐dot/polymer composites , 1995 .

[51]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[52]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[53]  T. Patten,et al.  Identification of acidic phosphorus-containing ligands involved in the surface chemistry of CdSe nanoparticles prepared in tri-N-octylphosphine oxide solvents. , 2008, Journal of the American Chemical Society.

[54]  M. Bawendi,et al.  CdSe nanocrystal based chem-/bio- sensors. , 2007, Chemical Society reviews.