Two-Dimensional Gdi2/Gec Van Der Waals Heterostructure: Bipolar Magnetic Semiconductor, High Curie Temperature and Large Magnetic Anisotropy

[1]  W. Mi,et al.  High Curie temperature and large perpendicular magnetic anisotropy in two-dimensional half metallic OsI3 monolayer with quantum anomalous Hall effect , 2022, Materials Today Physics.

[2]  Jisang Hong,et al.  Optically transparent ferromagnetic 2D WSe2/VSe2 heterostructure with high Curie temperature and high refractive index , 2022, Applied Surface Science.

[3]  M. Whangbo,et al.  High-Spin Orbital Interactions Across van der Waals Gaps Controlling the Interlayer Ferromagnetism in van der Waals Ferromagnets. , 2022, Journal of the American Chemical Society.

[4]  W. Mi,et al.  Exchange interactions in the 1T-VSe2 monolayer and their modulation via electron doping using alkali metal adsorption and the electride substrate. , 2022, Materials horizons.

[5]  Ming Li,et al.  Magnetic and Electronic Properties of AlN/VSe2 , 2022, Physical Review Applied.

[6]  H. Bai,et al.  Electron mediation enhanced magnetocrystalline anisotropy and Curie temperature of FeCl2 monolayer by an electride substrate , 2022, Applied Physics Letters.

[7]  W. Mi,et al.  Two-dimensional heterotriangulene-based manganese organic frameworks: bipolar magnetic and half semiconductors with perpendicular magnetocrystalline anisotropy. , 2022, Nanoscale.

[8]  Yi Cao,et al.  Room-Temperature van der Waals Perpendicular Ferromagnet Through Interlayer Magnetic Coupling , 2022, Physical Review Applied.

[9]  A. Dimoulas,et al.  Magnetic skyrmion manipulation in CrTe2/WTe2 2D van der Waals heterostructure , 2022, Applied Physics Letters.

[10]  Xingxing Li,et al.  A review of bipolar magnetic semiconductors from theoretical aspects , 2022, Fundamental research.

[11]  S. Dong,et al.  Structural reconstruction and anisotropic conductance in 4f-ferromagnetic monolayer , 2022, Materials Today Physics.

[12]  Changsheng Song,et al.  Strain-induced topological phase transition and enhanced Curie temperature in MnBi2Te4/CrI3 heterojunction , 2022, Physical Review Materials.

[13]  Y. An,et al.  Valley polarization, magnetic anisotropy and band alignment engineering in two-dimensional 2H-VTe2/1T-FeCl2 van der Waals heterostructures , 2022, Applied Surface Science.

[14]  Xiaomin Xu,et al.  Tunable magnetic coupling and high Curie temperature of two–dimensional PtBr3 via van der waals heterostructures , 2022, Applied Surface Science.

[15]  H. Bai,et al.  Two-Dimensional Janus FeXY (X, Y = Cl, Br, and I, X ≠ Y) Monolayers: Half-Metallic Ferromagnets with Tunable Magnetic Properties under Strain. , 2021, ACS applied materials & interfaces.

[16]  D. Zhong,et al.  Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures , 2021, Chinese Physics B.

[17]  Hongxin Yang,et al.  Interfacial Dzyaloshinskii-Moriya interaction and perpendicular magnetic anisotropy at cobalt/diamond interfaces , 2021, Journal of Magnetism and Magnetic Materials.

[18]  Jinlong Yang,et al.  Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers , 2021, Science China Chemistry.

[19]  W. Mi,et al.  Valley polarization, magnetic anisotropy and Dzyaloshinskii-Moriya interaction of two-dimensional graphene/Janus 2H-VSeX (X = S, Te) heterostructures , 2021 .

[20]  S. Dong,et al.  Ferroic orders in two-dimensional transition/rare-earth metal halides , 2020, 2011.01401.

[21]  K. Carva,et al.  Pressure-induced large increase of Curie temperature of the van der Waals ferromagnet VI3 , 2020, 2010.10319.

[22]  S. Parkin,et al.  Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer , 2020, Science.

[23]  Jinlan Wang,et al.  Prediction of a two-dimensional high-TC f-electron ferromagnetic semiconductor , 2020, Materials Horizons.

[24]  W. Duan,et al.  Magnetic anisotropy of the two-dimensional ferromagnetic insulator MnBi2Te4 , 2019, Physical Review B.

[25]  T. Olsen Theory and simulations of critical temperatures in CrI_3 and other 2D materials: easy-axis magnetic order and easy-plane Kosterlitz-Thouless transitions , 2019, MRS Communications.

[26]  P. Jena,et al.  Boosting the Curie Temperature of Two-Dimensional Semiconducting CrI3 Monolayer through van der Waals Heterostructures , 2019, The Journal of Physical Chemistry C.

[27]  H. Qin,et al.  Magnetic switches via electric field in BN nanoribbons , 2019, Applied Surface Science.

[28]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[29]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[30]  I. Žutić,et al.  Proximitized materials , 2018, Materials Today.

[31]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[32]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[33]  Jinlong Yang,et al.  First principles design of spintronics materials , 2016 .

[34]  Xiaodong Xu,et al.  Valleytronics in 2D materials , 2016 .

[35]  Jinlong Yang,et al.  Bipolar magnetic semiconductors: a new class of spintronics materials. , 2012, Nanoscale.

[36]  X. Tang,et al.  First-principles study of monolayer and bilayer honeycomb structures of group-IV elements and their binary compounds , 2011 .

[37]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[38]  E. Aktürk,et al.  Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations , 2009, 0907.4350.

[39]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[41]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[42]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[43]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[44]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[45]  M. Schienle,et al.  Magnetic ordering in GdI2 , 1984 .

[46]  J. Kosterlitz,et al.  The critical properties of the two-dimensional xy model , 1974 .

[47]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[48]  Cai-Xin Zhang,et al.  Giant valley splitting in the MoTe2/MnSe2 van der Waals heterostructure with room-temperature ferromagnetism , 2022, Materials Advances.

[49]  Jie J. Sun,et al.  Room Temperature Ferromagnetism and Transport Properties in Inn/Vte2 Van Der Waals Heterostructures , 2022, SSRN Electronic Journal.

[50]  D. Kang,et al.  Tunable electronic, optical, and spintronic properties in InSe/MTe2 (M = Pd, Pt) van der Waals heterostructures , 2021 .

[51]  Gang Zhang,et al.  Cr2TiC2-based double MXenes: novel 2D bipolar antiferromagnetic semiconductor with gate-controllable spin orientation toward antiferromagnetic spintronics. , 2018, Nanoscale.

[52]  V. L. Berezinskit DESTRUCTION OF LONG-RANGE ORDER IN ONE-DIMENSIONAL AND TWO-DIMENSIONAL SYSTEMS POSSESSING A CONTINUOUS SYMMETRY GROUP . II . QUANTUM , 2011 .