$n$-term silting complexes in $K^b(proj(\Lambda))$

. Let Λ be an Artin algebra and K b (proj(Λ)) be the triangulated category of bounded co-chain complexes in proj(Λ) . It is well known [AIR14] that two-terms silting complexes in K b (proj(Λ)) are described by the τ -tilting theory. The aim of this paper is to give a characterization of certain n -term silting complexes in K b (proj(Λ)) which are induced by Λ-modules. In order to do that, we introduce the notions of τ n -rigid, τ n -tilting and τ n,m -tilting Λ- modules. The latter is both a generalization of τ -tilting and tilting in mod(Λ) . It is also stated and proved some variant, for τ n -tilting modules, of the well known Bazzoni’s characterization for tilting modules [Ba04, Theorem 3.11]. We give some connections between n -terms presilting complexes in K b (proj(Λ)) and τ n -rigid Λ-modules. Moreover, a characterization is given to know when a τ n -tilting Λ-module is n -tilting. We also study more deeply the properties of the τ n,m -tilting Λ-modules and their connections of being m -tilting in some quotient algebras. We apply the developed τ n,m -tilting theory to the finitistic dimension and thus for n = m = 1 , we get as a particular case [Su21, Theorem 2.5]. Finally, at the end of the paper we discuss and state some open questions (conjectures) that we consider crucial for the future develop of the τ n,m -tilting theory.

[1]  Xiaojin Zhang Self-orthogonal τ-tilting modules and tilting modules , 2022 .

[2]  Lidia Angeleri Hugel Silting Objects , 2018, Bulletin of the London Mathematical Society.

[3]  Marco A. Pérez,et al.  Frobenius pairs in abelian categories , 2016, 1602.07328.

[4]  Pamela Suarez On the global dimension of the endomorphism algebra of a $\tau$-tilting module , 2018, 1809.06703.

[5]  Gustavo Jasso Reduction of τ-Tilting Modules and Torsion Pairs , 2013, 1302.2709.

[6]  A. Zimmermann Representation Theory: A Homological Algebra Point of View , 2014 .

[7]  Jiaqun Wei,et al.  Semi-tilting complexes , 2013 .

[8]  Octavio Mendoza Hernández,et al.  Auslander-Buchweitz Approximation Theory for Triangulated Categories , 2010, Appl. Categorical Struct..

[9]  Osamu Iyama,et al.  Silting mutation in triangulated categories , 2010, J. Lond. Math. Soc..

[10]  Changchang Xi,et al.  Finiteness of finitistic dimension is invariant under derived equivalences , 2009 .

[11]  D. Simson,et al.  Elements of the Representation Theory of Associative Algebras , 2007 .

[12]  O. Mendoza,et al.  Tilting categories with applications to stratifying systems , 2006 .

[13]  Osamu Iyama,et al.  Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories , 2004, math/0407052.

[14]  S. Bazzoni A characterization of n-cotilting and n-tilting modules , 2004 .

[15]  J. Verdier,et al.  Des catégories dérivées des catégories abéliennes , 1996 .

[16]  I. Reiten,et al.  Applications of contravariantly finite subcategories , 1991 .

[17]  A. Schofield,et al.  Cocovers and tilting modules , 1989, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  R. Buchweitz,et al.  The Homological Theory of Maximal Cohen-Macaulay Approximations , 1989 .

[19]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[20]  Y. Miyashita Tilting modules of finite projective dimension , 1986 .

[21]  M. Auslander,et al.  Almost split sequences in subcategories , 1981 .

[22]  M. Auslander,et al.  Preprojective modules over artin algebras , 1980 .

[23]  I. Reiten,et al.  Representation theory of artin algebras iii almost split sequences , 1975 .

[24]  Auslander Maurice,et al.  Representation Theory of Artin Algebras I , 1974 .