Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method

Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic optimization of CVD parameters such as temperature and growth time to obtain high quality films of CH3NH3PbI3 and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and time resolved photoluminescence data showed that the perovskite films have a large grain size of more than 1 micrometer, and carrier life-times of 10 ns and 120 ns for CH3NH3PbI3 and CH3NH3PbI3-xClx, respectively. This is the first demonstration of a highly efficient perovskite solar cell using one step CVD and there is likely room for significant improvement of device efficiency.

[1]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[2]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[3]  S. Hsiao,et al.  Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition , 2014, Advanced materials.

[4]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[5]  M. Tavakkoli,et al.  Effect of molybdenum on grain boundary segregation in Incoloy 901 superalloy , 2013 .

[6]  Yan Yao,et al.  Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. , 2015, ACS nano.

[7]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[8]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[9]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[10]  Alison B. Walker,et al.  Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy , 2015 .

[11]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[12]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[13]  L. Manna,et al.  The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics. , 2014, The journal of physical chemistry letters.

[14]  M. Grätzel,et al.  A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells , 2015 .

[15]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[16]  Shahzad Ahmad,et al.  Elucidating Transport-Recombination Mechanisms in Perovskite Solar Cells by Small-Perturbation Techniques , 2014 .

[17]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[18]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[19]  Cesare Soci,et al.  Perovskite Solar Cells , 2016 .

[20]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[21]  Z. Fan,et al.  Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol , 2015, Journal of nanoparticle research.

[22]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[23]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[24]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[25]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[26]  Tze Chien Sum,et al.  Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High‐Performance Perovskite Solar Cells and Optoelectronic Devices , 2014 .

[27]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[28]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[29]  Tao Song,et al.  High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering , 2014, Nano Research.

[30]  A. Jen,et al.  Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. , 2014, ACS nano.

[31]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[32]  Jeffrey Long,et al.  Materials to Devices , 2017 .

[33]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[34]  T. Minemoto,et al.  Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells , 2014 .

[35]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[36]  Mohammad Khaja Nazeeruddin,et al.  Organohalide Lead Perovskites for Photovoltaic Applications. , 2016, The journal of physical chemistry letters.

[37]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[38]  Mohammad Khaja Nazeeruddin,et al.  Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. , 2013, Journal of the American Chemical Society.

[39]  Parviz Davami,et al.  A quantitative approach to study solid state phase coarsening in solder alloys using combined phase-field modeling and experimental observation , 2014 .

[40]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[41]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[42]  M. Armstrong,et al.  Evaluating the performance of nanostructured materials as lithium-ion battery electrodes , 2013, Nano Research.