Phenolic profiling, biological activities and in silico studies of Acacia tortilis (Forssk.) Hayne ssp. raddiana extracts

[1]  K. Bacharı,et al.  Phenolic compounds characterization by LC-DAD- ESI/MSn and bioactive properties of Thymus algeriensis Boiss. & Reut. and Ephedra alata Decne. , 2019, Food research international.

[2]  K. Bacharı,et al.  Detailed chemical composition and functional properties of Ammodaucus leucotrichus Cross. & Dur. and Moringa oleifera Lamarck , 2019, Journal of Functional Foods.

[3]  B. Shrivastava,et al.  A Review on Acacia species of therapeutics importance , 2018 .

[4]  Rania M. Hathout,et al.  Characterization and optimization of phenolics extracts from Acacia species in relevance to their anti-inflammatory activity , 2018, Biochemical Systematics and Ecology.

[5]  Lillian Barros,et al.  Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh. cv Bravo de Esmolfe). , 2018, Food chemistry.

[6]  K. Bacharı,et al.  Profiling polyphenol composition by HPLC-DAD-ESI/MSn and the antibacterial activity of infusion preparations obtained from four medicinal plants. , 2018, Food & function.

[7]  A. Hussain,et al.  Comparative anticancer and antimicrobial activity of aerial parts of Acacia salicina, Acacia laeta, Acacia hamulosa and Acacia tortilis grown in Saudi Arabia , 2017, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society.

[8]  Jung-Woog Shin,et al.  In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles , 2017, International journal of nanomedicine.

[9]  Y. Man,et al.  Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments , 2017, BioMed research international.

[10]  C. N. Stewart,et al.  The Potential of Systems Biology to Discover Antibacterial Mechanisms of Plant Phenolics , 2017, Front. Microbiol..

[11]  A. Mollica,et al.  Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: phytochemical characterization, biological profile, and computational studies , 2017, Journal of enzyme inhibition and medicinal chemistry.

[12]  S. Carradori,et al.  Inhibition of Human Monoamine Oxidase: Biological and Molecular Modeling Studies on Selected Natural Flavonoids. , 2016, Journal of agricultural and food chemistry.

[13]  L. Barros,et al.  Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species , 2016 .

[14]  M. Hanana,et al.  Étude ethnobotanique et ethnopharmacologique d’Acacia tortilis (Forssk) Hayne subsp. raddiana (Savi) de la steppe arborée du Nord de l’Afrique , 2016, Phytothérapie.

[15]  I. Ferreira,et al.  Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. , 2016, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[16]  K. Sowndhararajan,et al.  Suppressive effects of acetone extract from the stem bark of three Acacia species on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophage cells , 2016 .

[17]  R. Carle,et al.  Identification of Phenolic Compounds in Red and Green Pistachio (Pistacia vera L.) Hulls (Exo- and Mesocarp) by HPLC-DAD-ESI-(HR)-MS(n). , 2016, Journal of agricultural and food chemistry.

[18]  A. Rayan,et al.  Chemical composition and nutritional evaluation of the seeds of Acacia tortilis (Forssk.) Hayne ssp. raddiana. , 2016, Food chemistry.

[19]  Maya A. Farha,et al.  Strategies for target identification of antimicrobial natural products. , 2016, Natural product reports.

[20]  M. Ullrich,et al.  Phenolic Profile and In Vitro Assessment of Cytotoxicity and AntibacterialActivity of Ziziphus spina-christi Leaf Extracts , 2016 .

[21]  J. Tarning,et al.  Screening of phytochemicals and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. , 2015 .

[22]  Shahid-ul-Islam,et al.  Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology , 2015 .

[23]  Ciptati,et al.  Qualitative analysis of catechins from green tea GMB-4 clone using HPLC and LC-MS/MS , 2015 .

[24]  Amoura,et al.  Ethnobotanical study of some medicinal plants from Hoggar, Algeria , 2015 .

[25]  Hai Wang,et al.  Anti-inflammatory Effects of (-)-Epicatechin in Lipopolysaccharide-Stimulated Raw 264.7 Macrophages , 2014 .

[26]  J. Hermoso,et al.  Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus , 2014, IUBMB life.

[27]  Ana Maria Carvalho,et al.  Bioactivity of Different Enriched Phenolic Extracts of Wild Fruits from Northeastern Portugal: A Comparative Study , 2014, Plant Foods for Human Nutrition.

[28]  H. Schulz,et al.  Different approaches to evaluate tannin content and structure of selected plant extracts - review and new aspects , 2013 .

[29]  S. Bansal,et al.  Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. , 2013, Natural product reports.

[30]  Ana Maria Carvalho,et al.  Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L , 2013 .

[31]  I. Ferreira,et al.  The role of phenolic compounds in the fight against cancer--a review. , 2013, Anti-cancer agents in medicinal chemistry.

[32]  R. Kant,et al.  α-D-Glucosidase inhibitory activity of polysaccharide isolated from Acacia tortilis gum exudate. , 2013, International journal of biological macromolecules.

[33]  K. Sakthivel,et al.  Acacia ferruginea inhibits tumor progression by regulating inflammatory mediators-(TNF-a, iNOS, COX-2, IL-1β, IL-6, IFN-γ, IL-2, GM-CSF) and pro-angiogenic growth factor- VEGF. , 2013, Asian Pacific journal of cancer prevention : APJCP.

[34]  D. Biswas,et al.  LC/ TOF/ ESI/ MS based detection of bioactive compounds present in leaf and bark extract of Acacia arabica , 2013 .

[35]  T. H. Roberts,et al.  Techniques for Analysis of Plant Phenolic Compounds , 2013, Molecules.

[36]  N. Kannan,et al.  Anticancer activity of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica against Dalton's ascitic lymphoma induced solid and ascitic tumor model. , 2012, Asian Pacific journal of cancer prevention : APJCP.

[37]  Rui M. V. Abreu,et al.  Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2-carboxylate derivatives: in vitro evaluation, cell cycle analysis and QSAR studies. , 2011, European journal of medicinal chemistry.

[38]  M. Abdel-Rahman,et al.  In vitro anti-uveal melanoma activity of phenolic compounds from the Egyptian medicinal plant Acacia nilotica. , 2011, Fitoterapia.

[39]  A. Khalatbary,et al.  Anti-inflammatory effect of the epigallocatechin gallate following spinal cord trauma in rat. , 2011, Iranian biomedical journal.

[40]  Usama A. Mahalel,et al.  Strong antioxidant phenolics from Acacia nilotica: profiling by ESI-MS and qualitative-quantitative determination by LC-ESI-MS. , 2011, Journal of pharmaceutical and biomedical analysis.

[41]  L. Mathew,et al.  Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica (Benth.) Brenan. , 2011, Journal of food science.

[42]  I. Khan,et al.  Gallic acid , 2011, Acta crystallographica. Section E, Structure reports online.

[43]  Rui M. V. Abreu,et al.  MOLA: a bootable, self-configuring system for virtual screening using AutoDock4/Vina on computer clusters , 2010, J. Cheminformatics.

[44]  J. van Staden,et al.  In vitro biological activities of niloticane, a new bioactive cassane diterpene from the bark of Acacia nilotica subsp. kraussiana. , 2010, Journal of ethnopharmacology.

[45]  P. Traldi,et al.  Grape and Wine Polyphenols , 2010 .

[46]  Riccardo Flamini,et al.  Mass Spectrometry in Grape and Wine Chemistry , 2010 .

[47]  M. Chaieb,et al.  Acacia tortilis subsp. raddiana in the North African arid zone: the obstacles to natural regeneration , 2010 .

[48]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[49]  P. Taylor,et al.  The beta-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus. , 2007, Microbiology.

[50]  M. Clifford,et al.  Profiling and characterization by LC-MSn of the galloylquinic acids of green tea, tara tannin, and tannic acid. , 2007, Journal of agricultural and food chemistry.

[51]  J. Simon,et al.  Determination of the predominant catechins in Acacia catechu by liquid chromatography/electrospray ionization-mass spectrometry. , 2006, Journal of agricultural and food chemistry.

[52]  D. Seigler Phytochemistry of Acacia—sensu lato , 2003 .

[53]  B. Basavaraj,et al.  Biological functions of epicatechin: Plant cell to human cell health , 2019, Journal of Functional Foods.

[54]  N. Khanjani,et al.  Agrowaste based ecofriendly bio-adsorbent for the removal of phenol: Adsorption and kinetic study by acacia tortilis pod shell , 2018 .

[55]  Anticancer Activities of Medicinal Plants –An Update , 2017 .

[56]  N. Kuhnert,et al.  UPLC-ESI-Q-TOF-MS/MS Characterization of Phenolics from Crataegus monogyna and Crataegus laevigata (Hawthorn) Leaves, Fruits and their Herbal Derived Drops (Crataegutt Tropfen) , 2016 .

[57]  Sunita Verma A REVIEW STUDY ON ACACIA TORTILLIS , 2016 .

[58]  P. Quézel,et al.  Nouvelle flore de l'Algerie et des regions desertiques meridionales - v. 1-2 , 1962 .