Cavity-enhanced optical feedback-assisted photo-acoustic spectroscopy with a 10.4 μm external cavity quantum cascade laser

An ultra-sensitive photo-acoustic spectrometer using a 10.4 μm broadly tunable mid-IR external cavity quantum cascade laser (EC-QCL) coupled with optical feedback to an optical power buildup cavity with high reflectivity mirrors was developed and tested. A laser optical power buildup factor of 181 was achieved, which corresponds to an intra-cavity power of 9.6 W at a wavelength of 10.4 μm. With a photo-acoustic resonance cell placed inside the cavity this resulted in the noise-equivalent absorption coefficient of 1.9 × 10−10 cm−1 Hz−1/2, and a normalized noise-equivalent absorption of 1.1 × 10−11 cm−1 W Hz−1/2. A novel photo-acoustic signal normalization technique makes the photo-acoustic spectrometer’s response immune to changes and drifts in the EC-QCL excitation power, EC-QCL to cavity coupling efficiency and cavity mirrors aging and contamination. An automatic lock of the EC-QCL to the cavity and optical feedback phase optimization permitted long wavelength scans within the entire EC-QCL spectral tuning range.

[1]  L. Kreuzer,et al.  Ultralow Gas Concentration Infrared Absorption Spectroscopy , 1971 .

[2]  L. Hollberg,et al.  Frequency stabilization of semiconductor lasers by resonant optical feedback. , 1987, Optics letters.

[3]  A. Kosterev,et al.  Applications of quartz tuning forks in spectroscopic gas sensing , 2005 .

[4]  Frank K. Tittel,et al.  Atmospheric ammonia measurements in Houston, TX using an external-cavity quantum cascade laser-based sensor , 2010 .

[5]  T. Hänsch,et al.  Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity , 1980 .

[6]  Elmer V Carlson,et al.  Noise in miniature microphones. , 2002, The Journal of the Acoustical Society of America.

[7]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[8]  Michael E Webber,et al.  Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers. , 2003, Applied optics.

[9]  Frank K. Tittel,et al.  QEPAS detector for rapid spectral measurements , 2010 .

[10]  C. Wieman,et al.  Atomic beam collimation using a laser diode with a self-locking power-buildup cavity. , 1988, Optics letters.

[11]  A. Clairon,et al.  Frequency noise analysis of optically self-locked diode lasers , 1989 .

[12]  M. Hippler,et al.  Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy. , 2010, The Journal of chemical physics.

[13]  Jun Ye,et al.  Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy , 1998 .

[14]  Daniele Romanini,et al.  Trace gas detection with DFB lasers and cavity ring-down spectroscopy , 2002, SPIE Optics + Photonics.

[15]  F. Capasso,et al.  Quantum cascade lasers in chemical physics , 2010 .

[16]  A. Miklós,et al.  Application of acoustic resonators in photoacoustic trace gas analysis and metrology , 2001 .

[17]  V. Koskinen,et al.  Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection: erratum. , 2006, Optics express.

[18]  Y. Ponomarev,et al.  High resolution ethylene absorption spectrum between 6035 and 6210 cm-1 , 2008 .

[19]  Jyrki Kauppinen,et al.  Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection. , 2005, Optics express.

[20]  Salvatore Iannotta,et al.  Optical enhancement of diode laser-photoacoustic trace gas detection by means of external Fabry-Perot cavity , 2005 .