Stochastic Receding Horizon Control With Bounded Control Inputs: A Vector Space Approach

We design receding horizon control strategies for stochastic discrete-time linear systems with additive (possibly) unbounded disturbances while satisfying hard bounds on the control actions. We pose the problem of selecting an appropriate optimal controller on vector spaces of functions and show that the resulting optimization problem has a tractable convex solution. Under marginal stability of the zero-control and zero-noise system we synthesize receding horizon polices that ensure bounded variance of the states while enforcing hard bounds on the controls. We provide examples that illustrate the effectiveness of our control strategies, and how quantities needed in the formulation of the resulting optimization problems can be calculated off-line.

[1]  Jun Yan,et al.  Incorporating state estimation into model predictive control and its application to network traffic control , 2005, Autom..

[2]  John Lygeros,et al.  On convexity of stochastic optimization problems with constraints , 2009, 2009 European Control Conference (ECC).

[3]  I Ivo Batina,et al.  Model predictive control for stochastic systems by randomized algorithms , 2004 .

[4]  J. Lygeros,et al.  Stable stochastic receding horizon control of linear systems with bounded control inputs , 2010 .

[5]  Eric C. Kerrigan,et al.  Optimization over state feedback policies for robust control with constraints , 2006, Autom..

[6]  James A. Primbs A soft constraint approach to stochastic receding horizon control , 2007, 2007 46th IEEE Conference on Decision and Control.

[7]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[8]  O. Bosgra,et al.  Stochastic closed-loop model predictive control of continuous nonlinear chemical processes , 2006 .

[9]  J. Löfberg Minimax approaches to robust model predictive control , 2003 .

[10]  John Lygeros,et al.  STOCHASTIC CONTROL UP TO A HITTING TIME: OPTIMALITY AND ROLLING-HORIZON IMPLEMENTATION , 2008 .

[11]  John Lygeros,et al.  Stochastic MPC with output feedback and bounded control inputs , 2010 .

[12]  Benjamin Van Roy,et al.  The Linear Programming Approach to Approximate Dynamic Programming , 2003, Oper. Res..

[13]  S. Weiland,et al.  Optimal control of linear, stochastic systems with state and input constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[14]  S. Foss,et al.  AN OVERVIEW OF SOME STOCHASTIC STABILITY METHODS( Network Design, Control and Optimization) , 2004 .

[15]  John Lygeros,et al.  Attaining Mean Square Boundedness of a Marginally Stable Stochastic Linear System With a Bounded Control Input , 2009, IEEE Transactions on Automatic Control.

[16]  J. Tsinias,et al.  Notions of exponential robust stochastic stability, ISS and their Lyapunov characterizations , 2003 .

[17]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[18]  V. Borkar Uniform Stability of Controlled Markov Processes , 2000 .

[19]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[20]  A. Saberi,et al.  On external semi-global stochastic stabilization of linear systems with input saturation , 2007, 2007 American Control Conference.

[21]  Stephen P. Boyd,et al.  Design of Affine Controllers via Convex Optimization , 2010, IEEE Transactions on Automatic Control.

[22]  Stephen P. Boyd,et al.  Nonlinear Q-Design for Convex Stochastic Control , 2009, IEEE Transactions on Automatic Control.

[23]  John Lygeros,et al.  On stochastic receding horizon control with bounded control inputs , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[24]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[25]  Manfred Morari,et al.  A tractable approximation of chance constrained stochastic MPC based on affine disturbance feedback , 2008, 2008 47th IEEE Conference on Decision and Control.

[26]  安藤 毅 Completely positive matrices , 1991 .

[27]  W. Brockett,et al.  Minimum attention control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[28]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[29]  Willem K. Klein Haneveld Integrated Chance Constraints , 1986 .

[30]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[31]  Robert R. Bitmead,et al.  Robust constrained predictive control using comparison model , 2005, Autom..

[32]  Warren B. Powell,et al.  Approximate Dynamic Programming - Solving the Curses of Dimensionality , 2007 .

[33]  O. Bosgra,et al.  A full solution to the constrained stochastic closed-loop MPC problem via state and innovations feedback and its receding horizon implementation , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[34]  W. Marsden I and J , 2012 .

[35]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[36]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[37]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[38]  Anthony J. Calise,et al.  Upper bounds for approximation of continuous-time dynamics using delayed outputs and feedforward neural networks , 2003, IEEE Trans. Autom. Control..

[39]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[40]  Eric C. Kerrigan,et al.  Input-to-state stability of robust receding horizon control with an expected value cost , 2008, Autom..

[41]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[42]  Raymond L. Smith,et al.  Rolling Horizon Procedures in Nonhomogeneous Markov Decision Processes , 1992, Oper. Res..

[43]  John Lygeros,et al.  NMPC for Complex Stochastic Systems Using a Markov Chain Monte Carlo Approach , 2007 .

[44]  L. Blackmore,et al.  Optimal, Robust Predictive Control of Nonlinear Systems under Probabilistic Uncertainty using Particles , 2007, 2007 American Control Conference.

[45]  Onésimo Hernández-Lerma,et al.  Value Iteration and Rolling Plans for Markov Control Processes with Unbounded Rewards , 1993 .

[46]  Robert R. Bitmead,et al.  A Constrained Model-Predictive Approach to Coordinated Control , 2005 .

[47]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Suboptimal Control: A Survey from ADP to MPC , 2005, Eur. J. Control.

[48]  Naira Hovakimyan,et al.  Stable Adaptation in the Presence of Actuator Constraints with Flight Control Applications , 2007 .

[49]  A. Richards,et al.  Robust model predictive control with imperfect information , 2005, Proceedings of the 2005, American Control Conference, 2005..

[50]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[51]  P. Schweitzer,et al.  Generalized polynomial approximations in Markovian decision processes , 1985 .

[52]  Alberto Bemporad,et al.  Discrete-Time Non-smooth Nonlinear MPC: Stability and Robustness , 2007 .

[53]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[54]  Eduardo Sontag,et al.  Global stabilization of linear discrete-time systems with bounded feedback , 1997 .

[55]  J. Lygeros,et al.  On convex problems in chance-constrained stochastic model predictive control , 2009, 0905.3447.

[56]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[57]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[58]  Bo Lincoln,et al.  Relaxing dynamic programming , 2006, IEEE Transactions on Automatic Control.

[59]  James A. Primbs,et al.  Stochastic Receding Horizon Control of Constrained Linear Systems With State and Control Multiplicative Noise , 2007, IEEE Transactions on Automatic Control.

[60]  John Lygeros,et al.  Convexity and convex approximations of discrete-time stochastic control problems with constraints , 2011, Autom..

[61]  P. Hokayem,et al.  ATTAINING MEAN SQUARE BOUNDEDNESS OF A NEUTRALLY STABLE NOISY LINEAR SYSTEM WITH A BOUNDED CONTROL INPUT , 2009 .

[62]  Dimitris Bertsimas,et al.  Constrained Stochastic LQC: A Tractable Approach , 2007, IEEE Transactions on Automatic Control.

[63]  Debasish Chatterjee,et al.  An Excursion-Theoretic Approach to Stability of Discrete-Time Stochastic Hybrid Systems , 2009, 0901.2269.

[64]  Basil Kouvaritakis,et al.  Probabilistic Constrained MPC for Systems with Multiplicative and Additive Stochastic Uncertainty , 2008 .