A Geometric Model for the Module Category of a Gentle Algebra
暂无分享,去创建一个
[1] Vincent Pilaud,et al. Non-kissing complexes and tau-tilting for gentle algebras , 2017, Memoirs of the American Mathematical Society.
[2] Sibylle Schroll,et al. On Extensions for Gentle Algebras , 2017, Canadian Journal of Mathematics.
[3] A. G. Elsener. Gentle m-Calabi-Yau tilted algebras , 2017, Algebra and Discrete Mathematics.
[4] T. McConville,et al. Oriented Flip Graphs and Noncrossing Tree Partitions , 2016, Discrete Mathematics & Theoretical Computer Science.
[5] Hermund André Torkildsen,et al. A Geometric Interpretation of Categories of Type Ã$\tilde {A}$ and of Morphisms in the Infinite Radical , 2020, Algebras and Representation Theory.
[6] T. McConville,et al. ORIENTED FLIP GRAPHS, NONCROSSING TREE PARTITIONS, AND REPRESENTATION THEORY OF TILING ALGEBRAS , 2019, Glasgow Mathematical Journal.
[7] A. Polishchuk,et al. Derived equivalences of gentle algebras via Fukaya categories , 2018, Mathematische Annalen.
[8] H. Thomas,et al. On the Combinatorics of Gentle Algebras , 2017, Canadian Journal of Mathematics.
[9] Sibylle Schroll,et al. Mapping cones in the bounded derived category of a gentle algebra , 2016, Journal of Algebra.
[10] Viviana Gubitosi. m-cluster tilted algebras of type , 2018 .
[11] Pierre-Guy Plamondon,et al. A geometric model for the derived category of gentle algebras , 2018, 1801.09659.
[12] Nathan Broomhead. Thick subcategories of discrete derived categories , 2016, Advances in Mathematics.
[13] Viviana Gubitosi. Derived class of m-cluster tilted algebras of type 𝔸̃ , 2015, Journal of Algebra and Its Applications.
[14] M. J. Parsons,et al. Endomorphism algebras for a class of negative Calabi-Yau categories , 2016, 1602.02318.
[15] Laurent Demonet. Algebras of partial triangulations , 2016, 1602.01592.
[16] K. Baur,et al. A geometric realization of tame categories , 2015, 1502.06489.
[17] Hermund André Torkildsen. A Geometric Realization of the m-cluster Category of Affine Type A , 2015 .
[18] L. Lamberti. Combinatorial model for the cluster categories of type E , 2014, 1403.0549.
[19] M. Kontsevich,et al. Flat surfaces and stability structures , 2014, 1409.8611.
[20] Sibylle Schroll,et al. Extensions in Jacobian Algebras and Cluster Categories of Marked Surfaces , 2014, 1408.2074.
[21] Sibylle Schroll. Trivial extensions of gentle algebras and Brauer graph algebras , 2014, 1405.6419.
[22] David Pauksztello,et al. Torsion pairs in a triangulated category generated by a spherical object , 2014, 1404.4623.
[23] K. Baur,et al. Torsion Pairs and Rigid Objects in Tubes , 2011, 1112.6132.
[24] F. Labourie. Lectures on Representations of Surface Groups , 2013 .
[25] K. Baur,et al. Torsion Pairs and Rigid Objects in Tubes , 2013, Algebras and Representation Theory.
[26] R. Schiffler,et al. Algebras from surfaces without punctures , 2011, 1103.4357.
[27] T. Brustle,et al. On the cluster category of a marked surface without punctures , 2010, 1005.2422.
[28] Martin Rubey,et al. Ptolemy diagrams and torsion pairs in the cluster category of Dynkin type An , 2010, 1010.1184.
[29] Ibrahim Assem,et al. Gentle algebras arising from surface triangulations , 2009, 0903.3347.
[30] Nathan Broomhead. Dimer Models and Calabi-Yau Algebras , 2009, 0901.4662.
[31] G. Murphy. Derived equivalence classification of m-cluster tilted algebras of type An , 2008, 0807.3840.
[32] Claire Amiot. Cluster categories for algebras of global dimension 2 and quivers with potential , 2008, 0805.1035.
[33] D. Labardini-Fragoso,et al. Quivers with potentials associated to triangulated surfaces , 2008, 0803.1328.
[34] D. Thurston,et al. Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006, math/0608367.
[35] K. Baur,et al. A geometric description of m-cluster categories , 2006, math/0607151.
[36] C. Geiss,et al. Classification of discrete derived categories , 2004 .
[37] R. Schiffler,et al. Quivers with relations arising from clusters $(A_n$ case) , 2004, math/0401316.
[38] A. Zimmermann,et al. Stable endomorphism algebras of modules over special biserial algebras , 2002, math/0208150.
[39] M. Khovanov,et al. A Category for the Adjoint Representation , 2000, math/0002060.
[40] J. Schröer. Modules without Self-Extensions over Gentle Algebras , 1999 .
[41] H. Krause. Maps between tree and band modules , 1991 .
[42] W. Crawley-Boevey,et al. Maps between representations of zero-relation algebras , 1989 .
[43] I. Assem,et al. Iterated tilted algebras of type $$\tilde {\mathbb{A}}_n $$ , 1987 .
[44] C. Ringel,et al. Auslander-reiten sequences with few middle terms and applications to string algebrass , 1987 .
[45] C. Geiss,et al. Gentle algebras are Gorenstein , 2022 .