Geometry and billiards

Motivation: Mechanics and optics Billiard in the circle and the square Billiard ball map and integral geometry Billiards inside conics and quadrics Existence and non-existence of caustics Periodic trajectories Billiards in polygons Chaotic billiards Dual billiards Bibliography Index.

[1]  S. Troubetzkoy Complexity lower bounds for polygonal billiards. , 1998, Chaos.

[2]  E. Cohen,et al.  On the Sequences of Collisions Among Hard Spheres in Infinite Space , 2000 .

[3]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[4]  A. Blokhuis Winning ways for your mathematical plays , 1984 .

[5]  S. Tabachnikov,et al.  Billiards in Finsler and Minkowski geometries , 2002 .

[6]  J. '. Paiva,et al.  Hilbert's fourth problem in two dimensions. , 2003 .

[7]  M. Wojtkowski Two applications of Jacobi fields to the billiard ball problem , 1994 .

[8]  V. Arnold Topological Invariants of Plane Curves and Caustics , 1994 .

[9]  M. Berger Seules les quadriques admettent des caustiques , 1995 .

[10]  A. N. Zemlyakov,et al.  Topological transitivity of billiards in polygons , 1975 .

[11]  M. Berry,et al.  Classical billiards in magnetic fields , 1985 .

[12]  Domokos Szász,et al.  The Erwin Schrr Odinger International Institute for Mathematical Physics Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries? , 2022 .

[13]  M. Kapovich,et al.  Universality theorems for configuration spaces of planar linkages , 1998, math/9803150.

[14]  Pascal Hubert Complexit?e de suites d?efinies par des billards rationnels , 1995 .

[15]  J. Mather Non-existence of invariant circles , 1984, Ergodic Theory and Dynamical Systems.

[16]  Jürgen Moser Is the solar system stable? , 1978 .

[17]  L. Bunimovich Dynamical Systems of Hyperbolic Type with Singularities , 1989 .

[18]  L. Silverman Poncelet's closure theorem , 2000 .

[19]  Garth E. Runion The Golden Section , 1990 .

[20]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[21]  N. Simányi Hard Ball Systems and Semi-Dispersive Billiards: Hyperbolicity and Ergodicity , 2000 .

[22]  Fr. Fabricius-bjerre On the Double Tangents of Plane Closed Curves. , 1962 .

[23]  Kai Cieliebak,et al.  Symplectic Geometry , 1992, New Spaces in Physics.

[24]  V. Benci,et al.  Periodic bounce trajectories with a low number of bounce points , 1989 .

[25]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[26]  S. Tabachnikov Asymptotic dynamics of the dual billiard transformation , 1996 .

[27]  S. Glashow,et al.  Three rods on a ring and the triangular billiard , 1997 .

[28]  R. Kershner,et al.  Concerning the transitive properties of geodesics on a rational polyhedron , 1936 .

[29]  Gerald L. Alexanderson The honors class: hilbert’s problems and their solvers , 2005 .

[30]  X. Mo An Introduction to Finsler Geometry , 2006 .

[31]  Kichoon Yang Projective Differential Geometry , 1999 .

[32]  R. Bott Lectures on Morse theory, old and new , 1982 .

[33]  Marek Rychlik Periodic points of the billiard ball map in a convex domain , 1989 .

[34]  E. Gutkin,et al.  Dual polygonal billiards and necklace dynamics , 1992 .

[35]  W. Floyd,et al.  HYPERBOLIC GEOMETRY , 1996 .

[36]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[37]  L. Santaló Integral geometry and geometric probability , 1976 .

[38]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[39]  The complete hyperbolicity of cylindric billiards , 1999, Ergodic Theory and Dynamical Systems.

[40]  Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards , 1999, math/9911226.

[41]  Claude Viterbo,et al.  An introduction to symplectic topology , 1991 .

[42]  Leonid A. Bunimovich,et al.  Mushrooms and other billiards with divided phase space. , 2001, Chaos.

[43]  Serge Tabachnikov,et al.  Rational billiards and flat structures , 2002 .

[44]  Serge Tabachnikov,et al.  The Four-Vertex Theorem Revisited—Two Variations on the Old Theme , 1995 .

[45]  V. Arnold Topological problems of the theory of wave propagation , 1996 .

[46]  Philip Boyland Dual billiards, twist maps and impact oscillators , 1994 .

[47]  Serge Tabachnikov,et al.  Projective Differential Geometry Old and New: From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups , 2004 .

[48]  S. Tabachnikov ELLIPSOIDS, COMPLETE INTEGRABILITY AND HYPERBOLIC GEOMETRY , 2002 .

[49]  Complexity of piecewise convex transformations in two dimensions, with applications to polygonal billiards , 2004, math/0412335.

[50]  R. Schwartz The Poncelet grid , 2007 .

[51]  J. Lebowitz,et al.  Hard Ball Systems and the Lorentz Gas , 2000 .

[52]  On three-periodic trajectories of multi-dimensional dual billiards , 2003, math/0302254.

[53]  F. Holt Periodic reflecting paths in right triangles , 1993 .

[54]  E. J. Wilczynski Projective differential geometry , 1906 .

[55]  Giulio Casati,et al.  Mixing Property of Triangular Billiards , 1999, chao-dyn/9908022.

[56]  E. Gutkin Blocking of billiard orbits and security for polygons and flat surfaces , 2005 .

[57]  Steven P. Kerckhoff,et al.  Ergodicity of billiard flows and quadratic differentials , 1986 .

[58]  Chris Arney,et al.  The Honors Class: Hilbert's Problems and Their Solvers , 2005 .

[59]  P. Paufler,et al.  Quasicrystals and Geometry , 1997 .

[60]  Maciej P. Wojtkowski,et al.  Principles for the design of billiards with nonvanishing Lyapunov exponents , 1986, Hamiltonian Dynamical Systems.

[61]  E. Jackson Opticks: or a treatise of the reflections, refractions, inflections and colours of light. , 1932 .

[62]  Baryshnikov,et al.  Complexity of trajectories in rectangular billiards , 1994, chao-dyn/9406001.

[63]  R. Kołodziej The Antibilliard outside a Polygon , 1989 .

[64]  Jan Rehacek,et al.  Nowhere Dispersing 3D Billiards with Non-vanishing Lyapunov Exponents , 1997 .

[65]  P. Pushkar Diameters of immersed manifolds and of wave fronts , 1998 .

[66]  Rolf Berndt,et al.  An introduction to symplectic geometry , 2000 .

[67]  S. Tabachnikov,et al.  ON POLYGONAL DUAL BILLIARD IN THE HYPERBOLIC PLANE , 2003 .

[68]  Convexity and the Average Curvature of Plane Curves , 1997 .

[69]  Nandor Simanyi,et al.  The Boltzmann-Sinai Ergodic Hypothesis in Two Dimensions (Without Exceptional Models) , 2004, math/0407368.

[70]  Periodic billiard trajectories in polygons: generating mechanisms , 1992 .

[71]  V. V. Kozlov,et al.  Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts , 1991 .

[72]  P. Walters Introduction to Ergodic Theory , 1977 .

[73]  Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems , 2000, math/0008241.

[74]  Serge Tabachnikov Dual billiards in the hyperbolic plane* , 2002 .

[75]  Christiaan Huygens and contact geometry , 2005, math/0501255.

[76]  S. Tabachnikov On the Dual Billiard Problem , 1995 .

[77]  Nn Andor,et al.  Ergodicity of Hard Spheres in a Box , 1997 .

[78]  M. V. Berry,et al.  Pseudointegrable systems in classical and quantum mechanics , 1981 .

[79]  F. Vivaldi,et al.  Global stability of a class of discontinuous dual billiards , 1987 .

[80]  C. Radin Miles of tiles , 1999 .

[81]  How High-Dimensional Stadia Look Like , 1998 .

[82]  T. Hill The Significant-Digit Phenomenon , 1995 .

[83]  Hans Walser The Golden Section , 2001 .

[84]  M. Bialy Convex billiards and a theorem by E. Hopf , 1993 .

[85]  J. Moser,et al.  Geometry of Quadrics and Spectral Theory , 1980 .

[86]  R. A. Raimi The First Digit Problem , 1976 .

[87]  Lorenz Halbeisen,et al.  On Periodic Billiard Trajectories in Obtuse Triangles , 2000, SIAM Rev..

[88]  Remarks on magnetic flows and magnetic billiards, Finsler metrics and a magnetic analog of Hilbert's fourth problem , 2003, math/0302288.

[89]  A. Kolan,et al.  Periodic trajectories in right-triangle billiards. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[90]  I. J. Schoenberg Mathematical Time Exposures , 1982 .

[91]  George William Tokarsky,et al.  Polygonal Rooms Not Illuminable from Every Point , 1995 .

[92]  T. Ruijgrok Periodic orbits in triangular billiards , 1991 .

[93]  Isaac Sir Newton Opticks, or, A treatise of the reflections, refractions, inflections & colours of light , 1933 .

[94]  THE TALE OF A GEOMETRIC INEQUALITY , 1999 .

[95]  James W. Anderson,et al.  Hyperbolic geometry , 1999 .

[96]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[97]  A. Katok Billiard table as a mathematician ’ s playground , 2002 .

[98]  Simon Newcomb,et al.  Note on the Frequency of Use of the Different Digits in Natural Numbers , 1881 .

[99]  CONVEX POLYHEDRA WITHOUT SIMPLE CLOSED GEODESICS , 2003 .

[100]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[101]  Jan von Plato,et al.  Boltzmann's ergodic hypothesis , 1991 .

[102]  D. Bao,et al.  An Introduction to Riemann-Finsler Geometry , 2000 .

[103]  T. Monteil On the finite blocking property , 2004, math/0406510.

[104]  V F Lazutkin,et al.  THE EXISTENCE OF CAUSTICS FOR A BILLIARD PROBLEM IN A CONVEX DOMAIN , 1973 .

[105]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .