Geometry and billiards
暂无分享,去创建一个
[1] S. Troubetzkoy. Complexity lower bounds for polygonal billiards. , 1998, Chaos.
[2] E. Cohen,et al. On the Sequences of Collisions Among Hard Spheres in Infinite Space , 2000 .
[3] V. Arnold,et al. Ordinary Differential Equations , 1973 .
[4] A. Blokhuis. Winning ways for your mathematical plays , 1984 .
[5] S. Tabachnikov,et al. Billiards in Finsler and Minkowski geometries , 2002 .
[6] J. '. Paiva,et al. Hilbert's fourth problem in two dimensions. , 2003 .
[7] M. Wojtkowski. Two applications of Jacobi fields to the billiard ball problem , 1994 .
[8] V. Arnold. Topological Invariants of Plane Curves and Caustics , 1994 .
[9] M. Berger. Seules les quadriques admettent des caustiques , 1995 .
[10] A. N. Zemlyakov,et al. Topological transitivity of billiards in polygons , 1975 .
[11] M. Berry,et al. Classical billiards in magnetic fields , 1985 .
[12] Domokos Szász,et al. The Erwin Schrr Odinger International Institute for Mathematical Physics Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries? , 2022 .
[13] M. Kapovich,et al. Universality theorems for configuration spaces of planar linkages , 1998, math/9803150.
[14] Pascal Hubert. Complexit?e de suites d?efinies par des billards rationnels , 1995 .
[15] J. Mather. Non-existence of invariant circles , 1984, Ergodic Theory and Dynamical Systems.
[16] Jürgen Moser. Is the solar system stable? , 1978 .
[17] L. Bunimovich. Dynamical Systems of Hyperbolic Type with Singularities , 1989 .
[18] L. Silverman. Poncelet's closure theorem , 2000 .
[19] Garth E. Runion. The Golden Section , 1990 .
[20] D. Saari,et al. Stable and Random Motions in Dynamical Systems , 1975 .
[21] N. Simányi. Hard Ball Systems and Semi-Dispersive Billiards: Hyperbolicity and Ergodicity , 2000 .
[22] Fr. Fabricius-bjerre. On the Double Tangents of Plane Closed Curves. , 1962 .
[23] Kai Cieliebak,et al. Symplectic Geometry , 1992, New Spaces in Physics.
[24] V. Benci,et al. Periodic bounce trajectories with a low number of bounce points , 1989 .
[25] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[26] S. Tabachnikov. Asymptotic dynamics of the dual billiard transformation , 1996 .
[27] S. Glashow,et al. Three rods on a ring and the triangular billiard , 1997 .
[28] R. Kershner,et al. Concerning the transitive properties of geodesics on a rational polyhedron , 1936 .
[29] Gerald L. Alexanderson. The honors class: hilbert’s problems and their solvers , 2005 .
[30] X. Mo. An Introduction to Finsler Geometry , 2006 .
[31] Kichoon Yang. Projective Differential Geometry , 1999 .
[32] R. Bott. Lectures on Morse theory, old and new , 1982 .
[33] Marek Rychlik. Periodic points of the billiard ball map in a convex domain , 1989 .
[34] E. Gutkin,et al. Dual polygonal billiards and necklace dynamics , 1992 .
[35] W. Floyd,et al. HYPERBOLIC GEOMETRY , 1996 .
[36] Jesse Freeman,et al. in Morse theory, , 1999 .
[37] L. Santaló. Integral geometry and geometric probability , 1976 .
[38] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[39] The complete hyperbolicity of cylindric billiards , 1999, Ergodic Theory and Dynamical Systems.
[40] Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards , 1999, math/9911226.
[41] Claude Viterbo,et al. An introduction to symplectic topology , 1991 .
[42] Leonid A. Bunimovich,et al. Mushrooms and other billiards with divided phase space. , 2001, Chaos.
[43] Serge Tabachnikov,et al. Rational billiards and flat structures , 2002 .
[44] Serge Tabachnikov,et al. The Four-Vertex Theorem Revisited—Two Variations on the Old Theme , 1995 .
[45] V. Arnold. Topological problems of the theory of wave propagation , 1996 .
[46] Philip Boyland. Dual billiards, twist maps and impact oscillators , 1994 .
[47] Serge Tabachnikov,et al. Projective Differential Geometry Old and New: From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups , 2004 .
[48] S. Tabachnikov. ELLIPSOIDS, COMPLETE INTEGRABILITY AND HYPERBOLIC GEOMETRY , 2002 .
[49] Complexity of piecewise convex transformations in two dimensions, with applications to polygonal billiards , 2004, math/0412335.
[50] R. Schwartz. The Poncelet grid , 2007 .
[51] J. Lebowitz,et al. Hard Ball Systems and the Lorentz Gas , 2000 .
[52] On three-periodic trajectories of multi-dimensional dual billiards , 2003, math/0302254.
[53] F. Holt. Periodic reflecting paths in right triangles , 1993 .
[54] E. J. Wilczynski. Projective differential geometry , 1906 .
[55] Giulio Casati,et al. Mixing Property of Triangular Billiards , 1999, chao-dyn/9908022.
[56] E. Gutkin. Blocking of billiard orbits and security for polygons and flat surfaces , 2005 .
[57] Steven P. Kerckhoff,et al. Ergodicity of billiard flows and quadratic differentials , 1986 .
[58] Chris Arney,et al. The Honors Class: Hilbert's Problems and Their Solvers , 2005 .
[59] P. Paufler,et al. Quasicrystals and Geometry , 1997 .
[60] Maciej P. Wojtkowski,et al. Principles for the design of billiards with nonvanishing Lyapunov exponents , 1986, Hamiltonian Dynamical Systems.
[61] E. Jackson. Opticks: or a treatise of the reflections, refractions, inflections and colours of light. , 1932 .
[62] Baryshnikov,et al. Complexity of trajectories in rectangular billiards , 1994, chao-dyn/9406001.
[63] R. Kołodziej. The Antibilliard outside a Polygon , 1989 .
[64] Jan Rehacek,et al. Nowhere Dispersing 3D Billiards with Non-vanishing Lyapunov Exponents , 1997 .
[65] P. Pushkar. Diameters of immersed manifolds and of wave fronts , 1998 .
[66] Rolf Berndt,et al. An introduction to symplectic geometry , 2000 .
[67] S. Tabachnikov,et al. ON POLYGONAL DUAL BILLIARD IN THE HYPERBOLIC PLANE , 2003 .
[68] Convexity and the Average Curvature of Plane Curves , 1997 .
[69] Nandor Simanyi,et al. The Boltzmann-Sinai Ergodic Hypothesis in Two Dimensions (Without Exceptional Models) , 2004, math/0407368.
[70] Periodic billiard trajectories in polygons: generating mechanisms , 1992 .
[71] V. V. Kozlov,et al. Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts , 1991 .
[72] P. Walters. Introduction to Ergodic Theory , 1977 .
[73] Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems , 2000, math/0008241.
[74] Serge Tabachnikov. Dual billiards in the hyperbolic plane* , 2002 .
[75] Christiaan Huygens and contact geometry , 2005, math/0501255.
[76] S. Tabachnikov. On the Dual Billiard Problem , 1995 .
[77] Nn Andor,et al. Ergodicity of Hard Spheres in a Box , 1997 .
[78] M. V. Berry,et al. Pseudointegrable systems in classical and quantum mechanics , 1981 .
[79] F. Vivaldi,et al. Global stability of a class of discontinuous dual billiards , 1987 .
[80] C. Radin. Miles of tiles , 1999 .
[81] How High-Dimensional Stadia Look Like , 1998 .
[82] T. Hill. The Significant-Digit Phenomenon , 1995 .
[83] Hans Walser. The Golden Section , 2001 .
[84] M. Bialy. Convex billiards and a theorem by E. Hopf , 1993 .
[85] J. Moser,et al. Geometry of Quadrics and Spectral Theory , 1980 .
[86] R. A. Raimi. The First Digit Problem , 1976 .
[87] Lorenz Halbeisen,et al. On Periodic Billiard Trajectories in Obtuse Triangles , 2000, SIAM Rev..
[88] Remarks on magnetic flows and magnetic billiards, Finsler metrics and a magnetic analog of Hilbert's fourth problem , 2003, math/0302288.
[89] A. Kolan,et al. Periodic trajectories in right-triangle billiards. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[90] I. J. Schoenberg. Mathematical Time Exposures , 1982 .
[91] George William Tokarsky,et al. Polygonal Rooms Not Illuminable from Every Point , 1995 .
[92] T. Ruijgrok. Periodic orbits in triangular billiards , 1991 .
[93] Isaac Sir Newton. Opticks, or, A treatise of the reflections, refractions, inflections & colours of light , 1933 .
[94] THE TALE OF A GEOMETRIC INEQUALITY , 1999 .
[95] James W. Anderson,et al. Hyperbolic geometry , 1999 .
[96] J. Moser,et al. Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .
[97] A. Katok. Billiard table as a mathematician ’ s playground , 2002 .
[98] Simon Newcomb,et al. Note on the Frequency of Use of the Different Digits in Natural Numbers , 1881 .
[99] CONVEX POLYHEDRA WITHOUT SIMPLE CLOSED GEODESICS , 2003 .
[100] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[101] Jan von Plato,et al. Boltzmann's ergodic hypothesis , 1991 .
[102] D. Bao,et al. An Introduction to Riemann-Finsler Geometry , 2000 .
[103] T. Monteil. On the finite blocking property , 2004, math/0406510.
[104] V F Lazutkin,et al. THE EXISTENCE OF CAUSTICS FOR A BILLIARD PROBLEM IN A CONVEX DOMAIN , 1973 .
[105] Boris Hasselblatt,et al. Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .