Computing k-th Lyndon Word and Decoding Lexicographically Minimal de Bruijn Sequence
暂无分享,去创建一个
[1] Harold Fredricksen,et al. An algorithm for generating necklaces of beads in two colors , 1986, Discret. Math..
[2] Kenneth G. Paterson,et al. A method for constructing decodable de Bruijn sequences , 1996, IEEE Trans. Inf. Theory.
[3] Marcin Mucha,et al. Lyndon Words and Short Superstrings , 2012, SODA.
[4] Donald E. Knuth,et al. The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations (Art of Computer Programming) , 2005 .
[5] Antonio Restivo,et al. Suffixes, Conjugates and Lyndon Words , 2013, Developments in Language Theory.
[6] Jean-Pierre Duval,et al. Generation of a section of conjugation classes and Lyndon word tree of limited length , 1988 .
[7] Wojciech Rytter,et al. Text Algorithms , 1994 .
[8] David Thomas,et al. The Art in Computer Programming , 2001 .
[9] Wojciech Rytter,et al. Extracting powers and periods in a word from its runs structure , 2014, Theor. Comput. Sci..
[10] Frank Ruskey,et al. Generating Necklaces , 1992, J. Algorithms.
[11] Jonathan Tuliani. De Bruijn sequences with efficient decoding algorithms , 2001, Discret. Math..
[12] Fan Chung Graham,et al. Universal cycles for combinatorial structures , 1992, Discret. Math..
[13] Jean-Pierre Duval,et al. Génération d'une Section des Classes de Conjugaison et Arbre des Mots de Lyndon de Longueur Bornée , 1988, Theor. Comput. Sci..
[14] Jean Pierre Duval,et al. Factorizing Words over an Ordered Alphabet , 1983, J. Algorithms.
[15] Tero Harju,et al. Combinatorics on Words , 2004 .
[16] Harold Fredricksen,et al. Necklaces of beads in k colors and k-ary de Bruijn sequences , 1978, Discret. Math..
[17] Grzegorz Rozenberg,et al. Developments in Language Theory II , 2002 .