Mesoporous TiO2 single crystals: facile shape-, size-, and phase-controlled growth and efficient photocatalytic performance.

In this work, we have succeeded in preparing rutile and anatase TiO2 mesoporous single crystals with diverse morphologies in a controllable fashion by a simple silica-templated hydrothermal method. A simple in-template crystal growth process was put forward, which involved heterogeneous crystal nucleation and oriented growth within the template, a sheer spectator, and an excluded volume, i.e., crystal growth by faithful negative replication of the silica template. A series of mesoporous single-crystal structures, including rutile mesoporous TiO2 nanorods with tunable sizes and anatase mesoporous TiO2 nanosheets with dominant {001} facets, have been synthesized to demonstrate the versatility of the strategy. The morphology, size, and phase of the TiO2 mesoporous single crystals can be tuned easily by varying the external conditions such as the hydrohalic acid condition, seed density, and temperature rather than by the silica template, which merely serves for faithful negative replication but without interfering in the crystallization process. To demonstrate the application value of such TiO2 mesoporous single crystals, photocatalytic activity was tested. The resultant TiO2 mesoporous single crystals exhibited remarkable photocatalytic performance on hydrogen evolution and degradation of methyl orange due to their increased surface area, single-crystal nature, and the exposure of reactive crystal facets coupled with the three-dimensionally connected mesoporous architecture. It was found that {110} facets of rutile mesoporous single crystals can be considered essentially as reductive sites with a key role in the photoreduction, while {001} facets of anatase mesoporous single crystals provided oxidation sites in the oxidative process. Such shape- and size-controlled rutile and anatase mesoporous TiO2 single crystals hold great promise for building energy conversion devices, and the simple solution-based hydrothermal method is extendable to the synthesis of other mesoporous single crystals beyond TiO2.

[1]  F. Gao,et al.  Anion-Assisted Synthesis of TiO2 Nanocrystals with Tunable Crystal Forms and Crystal Facets and Their Photocatalytic Redox Activities in Organic Reactions , 2013 .

[2]  Hanqing Yu,et al.  Hexagonal microrods of anatase tetragonal TiO2: self-directed growth and superior photocatalytic performance. , 2013, Chemical communications.

[3]  Yong Yan,et al.  Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage. , 2013, ACS applied materials & interfaces.

[4]  P. Schmuki,et al.  TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications , 2013 .

[5]  Shihe Yang,et al.  Template synthesis of single-crystal-like porous SrTiO₃ nanocube assemblies and their enhanced photocatalytic hydrogen evolution. , 2013, ACS applied materials & interfaces.

[6]  K. Wilson,et al.  Hierarchical porous materials: catalytic applications. , 2013, Chemical Society reviews.

[7]  D. Serrano,et al.  Synthesis strategies in the search for hierarchical zeolites. , 2013, Chemical Society reviews.

[8]  Jing Wei,et al.  Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. , 2013, Chemical Society reviews.

[9]  Xiao Hua Yang,et al.  On the synergistic effect of hydrohalic acids in the shape-controlled synthesis of anatase TiO2 single crystals , 2013 .

[10]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[11]  C. Ducati Materials science: Porosity in a single crystal , 2013, Nature.

[12]  Huijun Zhao,et al.  A new insight into regulating high energy facets of rutile TiO2 , 2013 .

[13]  Chenze Qi,et al.  Generalized and high temperature synthesis of a series of crystalline mesoporous metal oxides based nanocomposites with enhanced catalytic activities for benzene combustion , 2013 .

[14]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[15]  H. Snaith,et al.  Charge Transport Limitations in Self-Assembled TiO2 Photoanodes for Dye-Sensitized Solar Cells. , 2013, The journal of physical chemistry letters.

[16]  N. Umezawa,et al.  Anatase TiO2 Single Crystals Exposed with High-Reactive {111} Facets Toward Efficient H2 Evolution , 2013 .

[17]  Tim Leshuk,et al.  Mesoporous hollow sphere titanium dioxide photocatalysts through hydrothermal silica etching. , 2012, ACS applied materials & interfaces.

[18]  Zhong‐Lin Wang,et al.  Direct Growth of TiO2 Nanosheet Arrays on Carbon Fibers for Highly Efficient Photocatalytic Degradation of Methyl Orange , 2012, Advanced materials.

[19]  Kevin E. Shopsowitz,et al.  Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. , 2012, Angewandte Chemie.

[20]  P. Bruce,et al.  Ordered mesoporous metal oxides: synthesis and applications. , 2012, Chemical Society reviews.

[21]  Haijiao Zhang,et al.  Porous TiO2 hollow nanospheres: synthesis, characterization and enhanced photocatalytic properties , 2012 .

[22]  M. Fernández-García,et al.  Advanced nanoarchitectures for solar photocatalytic applications. , 2012, Chemical reviews.

[23]  P. Bruce,et al.  Nanoparticulate TiO2(B): an anode for lithium-ion batteries. , 2012, Angewandte Chemie.

[24]  Lianzhou Wang,et al.  Nanosized Anatase TiO2 Single Crystals with Tunable Exposed (001) Facets for Enhanced Energy Conversion Efficiency of Dye‐Sensitized Solar Cells , 2011 .

[25]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[26]  R. Scotti,et al.  Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: a probe to evaluate the role of crystal facets in photocatalytic processes. , 2011, Journal of the American Chemical Society.

[27]  T. Bein,et al.  Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal. , 2011, Journal of the American Chemical Society.

[28]  J. Zou,et al.  Anatase TiO₂ crystal facet growth: mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. , 2011, ACS applied materials & interfaces.

[29]  M. Muhler,et al.  Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. , 2011, Physical review letters.

[30]  D. Zhao,et al.  Ligand‐Assisted Assembly Approach to Synthesize Large‐Pore Ordered Mesoporous Titania with Thermally Stable and Crystalline Framework , 2011 .

[31]  Jian Pan,et al.  On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. , 2011, Angewandte Chemie.

[32]  Xiaowei Zhao,et al.  Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. , 2011, Journal of the American Chemical Society.

[33]  Meiqing Shen,et al.  Single-crystal-like titania mesocages. , 2011, Angewandte Chemie.

[34]  T. Brezesinski,et al.  Block copolymer-templated BiFeO3 nanoarchitectures composed of phase-pure crystallites intermingled with a continuous mesoporosity: Effective visible-light photocatalysts? , 2011 .

[35]  Toshiki Tsubota,et al.  Dependence of Photocatalytic Activity on Aspect Ratio of Shape-Controlled Rutile Titanium(IV) Oxide Nanorods , 2011 .

[36]  G. Armatas,et al.  Nanocasting of ordered mesoporous Co3O4-based polyoxometalate composite frameworks , 2010 .

[37]  Yujing Liu,et al.  Ultrasmall titania nanocrystals and their direct assembly into mesoporous structures showing fast lithium insertion. , 2010, Journal of the American Chemical Society.

[38]  John Wang,et al.  Supramolecular-templated thick mesoporous titania films for dye-sensitized solar cells: effect of morphology on performance. , 2009, ACS applied materials & interfaces.

[39]  Z. Su,et al.  Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2 , 2009 .

[40]  D. Zhao,et al.  Mesoporous Monocrystalline TiO2 and Its Solid-State Electrochemical Properties , 2009 .

[41]  T. Bein,et al.  Brick and Mortar Strategy for the Formation of Highly Crystalline Mesoporous Titania Films from Nanocrystalline Building Blocks , 2009 .

[42]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[43]  Toshiki Tsubota,et al.  Shape-Controlled Anatase Titanium(IV) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol , 2009 .

[44]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[45]  Wuzong Zhou,et al.  Crystalline mesoporous metal oxide , 2008 .

[46]  Arnold J. Forman,et al.  A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks. , 2008, Angewandte Chemie.

[47]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[48]  Jun Liu,et al.  Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 , 2008 .

[49]  Jinwoo Lee,et al.  Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. , 2008, Nature materials.

[50]  K. Domen,et al.  Crystallization of Mesoporous Metal Oxides , 2008 .

[51]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[52]  Wuzong Zhou,et al.  Mesoporous single-crystal Co3O4 templated by cage-containing mesoporous silica. , 2007, Chemical communications.

[53]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[54]  Jixue Li,et al.  Ordered mesoporous copper oxide with crystalline walls. , 2007, Angewandte Chemie.

[55]  Y. Nakato,et al.  Crystal-face dependence and photoetching-induced increases of dye-sensitized photocurrents at single-crystal rutile TiO2 surfaces. , 2006, The journal of physical chemistry. B.

[56]  A. Ennaoui,et al.  TIO2 AND TIO2–SIO2 THIN FILMS AND POWDERS BY ONE-STEP SOFT-SOLUTION METHOD: SYNTHESIS AND CHARACTERIZATIONS , 2006 .

[57]  Wuzong Zhou,et al.  Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica , 2006 .

[58]  D. Zhao,et al.  "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. , 2006, Accounts of chemical research.

[59]  P. Bruce,et al.  Ordered mesoporous Fe2O3 with crystalline walls. , 2006, Journal of the American Chemical Society.

[60]  T. Ohsuna,et al.  Formation of highly ordered mesoporous titania films consisting of crystalline nanopillars with inverse mesospace by structural transformation. , 2006, Journal of the American Chemical Society.

[61]  Ji Man Kim,et al.  Preparation of stable mesoporous inorganic oxides via nano-replication technique , 2004 .

[62]  David Grosso,et al.  Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. , 2003, Journal of the American Chemical Society.

[63]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[64]  James J. De Yoreo,et al.  Principles of crystal nucleation and growth , 2003 .

[65]  M. Matsumura,et al.  Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions , 2002 .

[66]  J. Nørskov,et al.  Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). , 2001, Physical review letters.

[67]  A. J. Frank,et al.  Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells , 2000 .

[68]  Bradley F. Chmelka,et al.  Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework , 1999 .

[69]  Kazumichi Yanagisawa and,et al.  Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature , 1999 .

[70]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[71]  L. Qi,et al.  Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles , 1995 .

[72]  Charles F. Zukoski,et al.  Preparation of monodisperse silica particles: control of size and mass fraction , 1988 .

[73]  Hexing Li,et al.  Ordered mesoporous TiO2 with exposed (001) facets and enhanced activity in photocatalytic selective oxidation of alcohols , 2013 .

[74]  Haoshen Zhou,et al.  Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization , 2004, Nature materials.

[75]  Wuzong Zhou,et al.  Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. , 2003, Chemical communications.

[76]  M. Grätzel Photoelectrochemical cells , 2001, Nature.