Hungaria asteroid region telescopic spectral survey (HARTSS) II: Spectral homogeneity among Hungaria family asteroids

[1]  T. Hiroi,et al.  Spectral properties and mineral compositions of acapulcoite–lodranite clan meteorites: Establishing S‐type asteroid–meteorite connections , 2018, Meteoritics & Planetary Science.

[2]  J. Emery,et al.  Hungaria asteroid region telescopic spectral survey (HARTSS) I: Stony asteroids abundant in the Hungaria background population , 2017 .

[3]  N. Moskovitz,et al.  A search for differentiated fragments within asteroid families , 2016 .

[4]  K. Walsh,et al.  Portrait of the Polana–Eulalia family complex: Surface homogeneity revealed from near-infrared spectroscopy , 2016 .

[5]  Joshua P. Emery,et al.  The Red Edge Problem in asteroid band parameter analysis , 2016 .

[6]  M. Broz,et al.  Identification and Dynamical Properties of Asteroid Families , 2015, 1502.01628.

[7]  J. Enriquez,et al.  Composition, mineralogy, and porosity of multiple asteroid systems from visible and near-infrared spectral data , 2014, 1409.0359.

[8]  B. Gladman,et al.  Hungaria asteroid family as the source of aubrite meteorites , 2014, 1406.0825.

[9]  Richard P. Binzel,et al.  Unexpected D-type interlopers in the inner main belt , 2013, 1312.2962.

[10]  Richard P. Binzel,et al.  Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites , 2013 .

[11]  Paul A. Abell,et al.  Olivine-dominated asteroids: Mineralogy and origin , 2013, 1310.1080.

[12]  C. Russell,et al.  Comparing Dawn, Hubble Space Telescope, and ground-based interpretations of (4) Vesta , 2013, 1307.6608.

[13]  Francesca DeMeo,et al.  The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys , 2013, 1307.2424.

[14]  Linda T. Elkins-Tanton,et al.  Differentiated Planetesimals and the Parent Bodies of Chondrites , 2013 .

[15]  J. Masiero,et al.  ASTEROID FAMILY IDENTIFICATION USING THE HIERARCHICAL CLUSTERING METHOD AND WISE/NEOWISE PHYSICAL PROPERTIES , 2013, 1305.1607.

[16]  S. Raymond,et al.  Populating the asteroid belt from two parent source regions due to the migration of giant planets—“The Grand Tack” , 2012 .

[17]  J. Emery,et al.  Dunites In The Sky? VNIR Spectra Of Six Suspected A-class Asteroids , 2012 .

[18]  David Vokrouhlicky,et al.  Yarkovsky and YORP effects , 2012, Scholarpedia.

[19]  Paul Mann,et al.  Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification , 2012, 1205.0248.

[20]  Harold F. Levison,et al.  An Archaean heavy bombardment from a destabilized extension of the asteroid belt , 2012, Nature.

[21]  E. L. Wright,et al.  NEOWISE OBSERVATIONS OF NEAR-EARTH OBJECTS: PRELIMINARY RESULTS , 2011, 1109.6400.

[22]  Michael J. Gaffey,et al.  Mineralogy of Asteroids , 2011 .

[23]  T. Grav,et al.  THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WIDE-FIELD INFRARED SURVEY EXPLORER/NEOWISE , 2011 .

[24]  David E. Trilling,et al.  Online multi-parameter phase-curve fitting and application to a large corpus of asteroid photometric data , 2011 .

[25]  Andreas Nathues,et al.  Mineralogical characterization of potential targets for the ASTEX mission scenario , 2011 .

[26]  A. Bischoff,et al.  The Rumuruti chondrite group , 2011 .

[27]  E. L. Wright,et al.  PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.

[28]  M. Gaffey,et al.  Spectral reflectance properties of ureilites , 2010 .

[29]  Michael J. Gaffey,et al.  Space weathering and the interpretation of asteroid reflectance spectra , 2010 .

[30]  Harry Y. McSween,et al.  A coordinated spectral, mineralogical, and compositional study of ordinary chondrites , 2010 .

[31]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[32]  Alberto Cellino,et al.  Dynamics of the Hungaria asteroids , 2010 .

[33]  N. Moskovitz,et al.  A spectroscopic comparison of HED meteorites and V-type asteroids in the inner Main Belt , 2010, 1003.2580.

[34]  T. Mccoy,et al.  Analysis of ordinary chondrites using powder X‐ray diffraction: 1. Modal mineral abundances , 2010 .

[35]  Alan W. Harris,et al.  Analysis of the Hungaria asteroid population , 2009 .

[36]  M. Fulchignoni,et al.  Plausible parent bodies for enstatite chondrites and mesosiderites: Implications for Lutetia's fly-by , 2009 .

[37]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[38]  Linda T. Elkins-Tanton,et al.  Chondrites as samples of differentiated planetesimals , 2009 .

[39]  Richard P. Binzel,et al.  Pyroxene mineralogies of near‐Earth vestoids , 2009 .

[40]  Alberto Cellino,et al.  Asteroid families: Current situation , 2009 .

[41]  Dale P. Cruikshank,et al.  NEAR-INFRARED SPECTROSCOPY OF TROJAN ASTEROIDS: EVIDENCE FOR TWO COMPOSITIONAL GROUPS , 2008, 1012.1284.

[42]  Zeljko Ivezic,et al.  The Size Distributions of Asteroid Families in the SDSS Moving Object Catalog 4 , 2008, 0807.3762.

[43]  M. Barucci,et al.  Visible and near infrared spectroscopic investigation of E-type asteroids, including 2867 Steins, a target of the Rosetta mission , 2008 .

[44]  T. Burbine,et al.  Mineralogical analysis of the Eos family from near-infrared spectra , 2008 .

[45]  Angioletta Coradini,et al.  Dawn Mission to Vesta and Ceres , 2007 .

[46]  I. Franchi,et al.  Reflectance spectra of Mesosiderites: Implications for asteroid 4 Vesta , 2007 .

[47]  A. Vacca Steps Toward a Common Near-Infrared Photometric System , 2007, astro-ph/0702285.

[48]  J. Sunshine,et al.  Olivine‐dominated asteroids and meteorites: Distinguishing nebular and igneous histories , 2007 .

[49]  Alessandro Morbidelli,et al.  Yarkovsky/YORP chronology of asteroid families , 2006 .

[50]  William F. Bottke,et al.  THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics , 2006 .

[51]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[52]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[53]  Paul A. Abell,et al.  Near-IR spectral evidence for the presence of iron-poor orthopyroxenes on the surfaces of six M-type asteroids , 2005 .

[54]  M. Shepard,et al.  Spectroscopy of X-Type Asteroids , 2004 .

[55]  R. Duffard,et al.  S3OS2: the visible spectroscopic survey of 820 asteroids , 2004 .

[56]  Robert H. Anderson,et al.  The Goodman spectrograph , 2004, SPIE Astronomical Telescopes + Instrumentation.

[57]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[58]  Timothy H. McConnochie,et al.  E‐type asteroid spectroscopy and compositional modeling , 2004 .

[59]  A. Davis,et al.  Differentiation history of the mesosiderite parent body: constraints from trace elements and manganese-chromium isotope systematics in Vaca Muerta silicate clasts , 2003 .

[60]  Robert H. Brown,et al.  Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy , 2003 .

[61]  J. Sunshine,et al.  Deriving asteroid mineralogies from reflectance spectra: Implications for the MUSES-C target asteroid , 2003 .

[62]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[63]  M. Gaffey,et al.  High‐albedo asteroid 434 Hungaria: Spectrum, composition and genetic connections , 2002 .

[64]  Gretchen Benedix,et al.  Spectra of extremely reduced assemblages: Implications for Mercury , 2002 .

[65]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[66]  Alberto Cellino,et al.  Physical and Dynamical Properties of Asteroid Families , 2002 .

[67]  D. Vokrouhlický,et al.  The Effect of Yarkovsky Thermal Forces on the Dynamical Evolution of Asteroids and Meteoroids , 2002 .

[68]  K. Keil,et al.  Meteoritic parent bodies: Their number and identification , 2002 .

[69]  Alain Doressoundiram,et al.  Spectroscopic Properties of Asteroid Families , 2002 .

[70]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[71]  D. Lamb,et al.  Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data , 2001, astro-ph/0105511.

[72]  P. Farinella,et al.  Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies , 2000, Nature.

[73]  L. V. Moroz,et al.  Reflectance spectra of olivine-orthopyroxene-bearing assemblages at decreased temperatures: implications for remote sensing of asteroids , 2000 .

[74]  E. Oliva Infrared instrumentation for large telescopes: an alternative approach , 1999, astro-ph/9909108.

[75]  Paul G. Lucey,et al.  Implications of temperature‐dependent near‐IR spectral properties of common minerals and meteorites for remote sensing of asteroids , 1999 .

[76]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[77]  Alberto Cellino,et al.  Asteroid Families: Search of a 12,487-Asteroid Sample Using Two Different Clustering Techniques , 1995 .

[78]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[79]  Alberto Cellino,et al.  Asteroid Famalies. II. Extension to Unnumbered Multiopposition Asteroids , 1994 .

[80]  M. Gaffey,et al.  Accessory phases in aubrites: spectral properties and implications for asteroid 44 Nysa , 1993 .

[81]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[82]  Michael J. Gaffey,et al.  Relationship of E-type Apollo asteroid 3103 (1982 BB) to the enstatite achondrite meteorites and the Hungaria asteroids , 1992 .

[83]  Carle M. Pieters,et al.  Comparison of asteroid and meteorite spectra - Classification by principal component analysis , 1992 .

[84]  D. Cruikshank,et al.  Organic material: Asteroids, meteorites, and planetary satellites , 1992 .

[85]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[86]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[87]  Alberto Cellino,et al.  Asteroid Families. I. Identification by Hierarchical Clustering and Reliability Assessment , 1990 .

[88]  K. Keil Enstatite meteorites and their parent bodies , 1989 .

[89]  W. Ridley,et al.  Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications , 1987 .

[90]  R. Singer,et al.  Possible temperature variation effects on the interpretation of spatially resolved reflectance observations of asteroid surfaces , 1987 .

[91]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[92]  Robert B. Singer,et al.  Effects of temperature on remotely sensed mineral absorption features , 1985 .

[93]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[94]  E. Tedesco,et al.  Compositional Structure of the Asteroid Belt , 1982, Science.

[95]  Joseph Veverka,et al.  The composition of the Trojan asteroids , 1980, Nature.

[96]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[97]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[98]  K. Keil Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies , 2010 .

[99]  F. Mannucci,et al.  NICS: The TNG Near Infrared Camera Spectrometer , 2001 .

[100]  R. Carlson,et al.  Timescales of Planetesimal Differentiation in the Early Solar System , 2006 .

[101]  Richard P. Binzel,et al.  The MIT-Hawaii-IRTF Joint Campaign for NEO Spectral Reconnaissance , 2005 .

[102]  Paul G. Lucey,et al.  Temperature-Dependent Near-Infrared Spectral Properties of Minerals, Meteorites, and Lunar Soil , 2002 .

[103]  Ulrich Schade,et al.  Nir reflectance spectroscopy of mafic minerals in the temperature range between 80 and 473 K , 1999 .

[104]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[105]  D. J. Tholen,et al.  Asteroid taxonomic classifications , 1989 .

[106]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .