BoGH13A_Sus from Bacteroides ovatus represents a novel α-amylase used for  Bacteroides starch breakdown in the human gut

[1]  N. Ranson,et al.  Outer membrane utilisomes mediate glycan uptake in gut Bacteroidetes , 2023, Nature.

[2]  W. Minor,et al.  CMM—An enhanced platform for interactive validation of metal binding sites , 2022, Protein science : a publication of the Protein Society.

[3]  Š. Janeček,et al.  A Novel Subfamily GH13_46 of the α-Amylase Family GH13 Represented by the Cyclomaltodextrinase from Flavobacterium sp. No. 92 , 2022, Molecules.

[4]  J. Biteen,et al.  Single-Molecule Dynamics of Surface Lipoproteins in Bacteroides Indicate Similarities and Cooperativity. , 2022, Biophysical journal.

[5]  Eric P. Skaar,et al.  Multimodal Imaging Mass Spectrometry of Murine Gastrointestinal Tract with Retained Luminal Content. , 2022, Journal of the American Society for Mass Spectrometry.

[6]  R. Ji,et al.  Structure and Function Insight of the α-Glucosidase QsGH13 From Qipengyuania seohaensis sp. SW-135 , 2022, Frontiers in Microbiology.

[7]  Ryan D. Crawford,et al.  Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria , 2022, mSystems.

[8]  B. Henrissat,et al.  The carbohydrate-active enzyme database: functions and literature , 2021, Nucleic Acids Res..

[9]  D. Hassabis,et al.  AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models , 2021, Nucleic Acids Res..

[10]  Ryan D. Crawford,et al.  Phenotypic and genomic diversification in complex carbohydrate degrading human gut bacteria , 2021, bioRxiv.

[11]  D. Kang,et al.  Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper , 2021, Animal nutrition.

[12]  V. Eijsink,et al.  Polysaccharide degradation by the Bacteroidetes - mechanisms and nomenclature. , 2021, Environmental microbiology reports.

[13]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[14]  H. Brumer,et al.  Distinct protein architectures mediate species-specific beta-glucan binding and metabolism in the human gut microbiota , 2021, The Journal of biological chemistry.

[15]  D. South Losses. , 2020, Journal of the Mississippi State Medical Association.

[16]  N. Koropatkin,et al.  Host glycan utilization within the Bacteroidetes Sus-like paradigm. , 2020, Glycobiology.

[17]  H. Brumer,et al.  Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Bacteroides , 2020, mBio.

[18]  G. Hansson Mucins and the Microbiome. , 2020, Annual review of biochemistry.

[19]  Gwyndaf Evans,et al.  Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling , 2020, Acta crystallographica. Section D, Structural biology.

[20]  S. O'keefe,et al.  Diet and the Human Gut Microbiome: An International Review , 2020, Digestive Diseases and Sciences.

[21]  N. Koropatkin,et al.  Starch Digestion by Gut Bacteria: Crowdsourcing for Carbs. , 2020, Trends in microbiology.

[22]  D. Cockburn,et al.  The structures of the GH13_36 amylases from Eubacterium rectale and Ruminococcus bromii reveal subsite architectures that favor maltose production , 2020, Amylase.

[23]  D. Cockburn,et al.  Resistant starch: impact on the gut microbiome and health. , 2019, Current opinion in biotechnology.

[24]  Stan J. J. Brouns,et al.  Evolution of BACON Domain Tandem Repeats in crAssphage and Novel Gut Bacteriophage Lineages , 2019, Viruses.

[25]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[26]  B. Henrissat,et al.  Bacteroidetes use thousands of enzyme combinations to break down glycans , 2019, Nature Communications.

[27]  Olivier Gascuel,et al.  NGPhylogeny.fr: new generation phylogenetic services for non-specialists , 2019, Nucleic Acids Res..

[28]  K. Pollard,et al.  New insights from uncultivated genomes of the global human gut microbiome , 2019, Nature.

[29]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[30]  Nichollas E. Scott,et al.  Surface Exposure and Packing of Lipoproteins into Outer Membrane Vesicles Are Coupled Processes in Bacteroides , 2018, mSphere.

[31]  Jie Feng,et al.  The effect of enzymes on release of trace elements in feedstuffs based on in vitro digestion model for monogastric livestock , 2018, Journal of Animal Science and Biotechnology.

[32]  J. Biteen,et al.  The Starch Utilization System Assembles around Stationary Starch-Binding Proteins. , 2018, Biophysical journal.

[33]  Kassem M. Makki,et al.  The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. , 2018, Cell host & microbe.

[34]  M. H. Foley,et al.  SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron , 2018, Molecular microbiology.

[35]  Eric P. Skaar,et al.  The Impact of Dietary Transition Metals on Host-Bacterial Interactions. , 2018, Cell host & microbe.

[36]  H. Brumer,et al.  Structural basis for the flexible recognition of α‐glucan substrates by Bacteroides thetaiotaomicron SusG , 2018, Protein science : a publication of the Protein Society.

[37]  J. Sonnenburg,et al.  Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in Bacteroides thetaiotaomicron Strains , 2018, mSphere.

[38]  Xun Xu,et al.  Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment , 2017, Nature Communications.

[39]  B. Henrissat,et al.  Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides , 2017, Nature Microbiology.

[40]  Vincent Lombard,et al.  PULDB: the expanded database of Polysaccharide Utilization Loci , 2017, Nucleic Acids Res..

[41]  Bruce R. Hamaker,et al.  Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence , 2017, mBio.

[42]  J. Potempa,et al.  The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function , 2017, Front. Cell. Infect. Microbiol..

[43]  S. Ball,et al.  Bound Substrate in the Structure of Cyanobacterial Branching Enzyme Supports a New Mechanistic Model* , 2017, The Journal of Biological Chemistry.

[44]  H. Brumer,et al.  Polysaccharide Utilization Loci: Fueling Microbial Communities , 2017, Journal of bacteriology.

[45]  D. Cockburn,et al.  Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. , 2016, Journal of molecular biology.

[46]  Eric P. Skaar,et al.  Salmonella Mitigates Oxidative Stress and Thrives in the Inflamed Gut by Evading Calprotectin-Mediated Manganese Sequestration. , 2016, Cell host & microbe.

[47]  F. Bäckhed,et al.  From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites , 2016, Cell.

[48]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[49]  M. H. Foley,et al.  The Sus operon: a model system for starch uptake by the human gut Bacteroidetes , 2016, Cellular and Molecular Life Sciences.

[50]  B. Svensson,et al.  Structure and function of α-glucan debranching enzymes , 2016, Cellular and Molecular Life Sciences.

[51]  V. V. Khrustalev,et al.  Magnesium and manganese binding sites on proteins have the same predominant motif of secondary structure. , 2016, Journal of theoretical biology.

[52]  Kok-Gan Chan,et al.  Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass , 2016, Scientific Reports.

[53]  Keith S Wilson,et al.  Privateer: software for the conformational validation of carbohydrate structures , 2015, Nature Structural &Molecular Biology.

[54]  Š. Janeček,et al.  A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus , 2015, Biologia.

[55]  J. Chiou,et al.  Crystal Structures of Escherichia coli Branching Enzyme in Complex with Linear Oligosaccharides. , 2015, Biochemistry.

[56]  Olivier Gascuel,et al.  FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program , 2015, Molecular biology and evolution.

[57]  Erik G Marklund,et al.  Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. , 2015, Analytical chemistry.

[58]  B. Svensson,et al.  Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation. , 2015, International journal of biological macromolecules.

[59]  Elizabeth A. Cameron,et al.  Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts , 2014, mBio.

[60]  B. Hamaker,et al.  Multifunctional Nutrient-Binding Proteins Adapt Human Symbiotic Bacteria for Glycan Competition in the Gut by Separately Promoting Enhanced Sensing and Catalysis , 2014, mBio.

[61]  R. Mackie,et al.  Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes , 2014, Proceedings of the National Academy of Sciences.

[62]  H. Brumer,et al.  A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes , 2014, Nature.

[63]  P. Degnan,et al.  Human gut microbes use multiple transporters to distinguish vitamin B₁₂ analogs and compete in the gut. , 2014, Cell host & microbe.

[64]  Bernard Henrissat,et al.  Effects of Diet on Resource Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a Symbiont with an Extensive Glycobiome , 2013, PLoS biology.

[65]  R. Gilbert,et al.  Improving human health through understanding the complex structure of glucose polymers , 2013, Analytical and Bioanalytical Chemistry.

[66]  Graeme Winter,et al.  Decision making in xia2 , 2013, Acta crystallographica. Section D, Biological crystallography.

[67]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[68]  M. Alam,et al.  Crystal structure of a compact α-amylase from Geobacillus thermoleovorans. , 2013, Enzyme and microbial technology.

[69]  Itay Mayrose,et al.  ConSurf: Using Evolutionary Data to Raise Testable Hypotheses about Protein Function , 2013 .

[70]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[71]  B. Svensson,et al.  Structure of the starch-debranching enzyme barley limit dextrinase reveals homology of the N-terminal domain to CBM21. , 2012, Acta crystallographica. Section F, Structural biology and crystallization communications.

[72]  T. Smith,et al.  Multidomain Carbohydrate-binding Proteins Involved in Bacteroides thetaiotaomicron Starch Metabolism* , 2012, The Journal of Biological Chemistry.

[73]  Forest Rohwer,et al.  Going viral: next-generation sequencing applied to phage populations in the human gut , 2012, Nature Reviews Microbiology.

[74]  B. Hamaker,et al.  Modulation of Starch Digestion for Slow Glucose Release through “Toggling” of Activities of Mucosal α-Glucosidases* , 2012, The Journal of Biological Chemistry.

[75]  F. Nielsen Manganese, Molybdenum, Boron, Chromium, and Other Trace Elements , 2012 .

[76]  Eric P. Skaar,et al.  Inhibition of bacterial superoxide defense , 2012, Virulence.

[77]  Bernard Henrissat,et al.  Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts , 2011, PLoS biology.

[78]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[79]  Š. Janeček,et al.  Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. , 2011, Enzyme and microbial technology.

[80]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[81]  Alexis Criscuolo,et al.  BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments , 2010, BMC Evolutionary Biology.

[82]  Tal Pupko,et al.  ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids , 2010, Nucleic Acids Res..

[83]  Evgeny M. Zdobnov,et al.  The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell , 2010, Bioinform..

[84]  T. Smith,et al.  SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules. , 2010, Structure.

[85]  Eric C. Martens,et al.  Complex Glycan Catabolism by the Human Gut Microbiota: The Bacteroidetes Sus-like Paradigm , 2009, The Journal of Biological Chemistry.

[86]  S. Firbank,et al.  Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function , 2009, Proceedings of the National Academy of Sciences.

[87]  Yuh-Ju Sun,et al.  Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. , 2008, The Biochemical journal.

[88]  J. Gordon,et al.  Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. , 2008, Cell host & microbe.

[89]  E. Bayer,et al.  Cell Surface Enzyme Attachment Is Mediated by Family 37 Carbohydrate-Binding Modules, Unique to Ruminococcus albus , 2008, Journal of bacteriology.

[90]  J. Gordon,et al.  Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. , 2008, Structure.

[91]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[92]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[93]  Bernard Henrissat,et al.  Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. , 2006, Protein engineering, design & selection : PEDS.

[94]  Š. Janeček,et al.  A new clan of CBM families based on bioinformatics of starch‐binding domains from families CBM20 and CBM21 , 2005, The FEBS journal.

[95]  S. Withers,et al.  Acarbose rearrangement mechanism implied by the kinetic and structural analysis of human pancreatic alpha-amylase in complex with analogues and their elongated counterparts. , 2004, Biochemistry.

[96]  S. Kamitori,et al.  Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. , 2004, Journal of molecular biology.

[97]  S. Hess,et al.  Genes malh and pagl of Clostridium acetobutylicum ATCC 824 Encode NAD+- and Mn2+-dependent Phospho-α-glucosidase(s)* , 2004, Journal of Biological Chemistry.

[98]  K. Ozaki,et al.  Crystal Structure of Calcium-free α-Amylase from Bacillus sp. Strain KSM-K38 (AmyK38) and Its Sodium Ion Binding Sites* , 2003, Journal of Biological Chemistry.

[99]  M. Maguire,et al.  Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. , 2003, FEMS microbiology reviews.

[100]  O. Mayans,et al.  Differential Regulation of a Hyperthermophilic α-Amylase with a Novel (Ca,Zn) Two-metal Center by Zinc* , 2003, The Journal of Biological Chemistry.

[101]  G. Shoham,et al.  Detailed Kinetic Analysis and Identification of the Nucleophile in α-l-Arabinofuranosidase from Geobacillus stearothermophilus T-6, a Family 51 Glycoside Hydrolase* , 2002, The Journal of Biological Chemistry.

[102]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[103]  A. Salyers,et al.  Biochemical Analysis of Interactions between Outer Membrane Proteins That Contribute to Starch Utilization byBacteroides thetaiotaomicron , 2001, Journal of bacteriology.

[104]  Š. Janeček,et al.  Relationship of sequence and structure to specificity in the α-amylase family of enzymes , 2001 .

[105]  Š. Janeček,et al.  Amylolytic enzymes: molecular aspects of their properties. , 2001, General physiology and biophysics.

[106]  M. Harding,et al.  Geometry of metal-ligand interactions in proteins. , 2001, Acta crystallographica. Section D, Biological crystallography.

[107]  W. Liebl,et al.  Thermotoga maritima AglA, an extremely thermostable NAD+-, Mn2+-, and thiol-dependent α-glucosidase , 2000, Extremophiles.

[108]  J. Kim,et al.  Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. , 2000, Biochimica et biophysica acta.

[109]  A. Salyers,et al.  Physiological Characterization of SusG, an Outer Membrane Protein Essential for Starch Utilization byBacteroides thetaiotaomicron , 1999, Journal of bacteriology.

[110]  K. Okuyama,et al.  Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A resolution. , 1999, Journal of molecular biology.

[111]  Jung-Wan Kim,et al.  Modes of Action of Acarbose Hydrolysis and Transglycosylation Catalyzed by a Thermostable Maltogenic Amylase, the Gene for Which Was Cloned from a ThermusStrain , 1999, Applied and Environmental Microbiology.

[112]  E. Forest,et al.  The human pancreatic alpha-amylase isoforms: isolation, structural studies and kinetics of inhibition by acarbose. , 1998, Biochimica et biophysica acta.

[113]  B. Svensson,et al.  Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis. , 1998, Journal of molecular biology.

[114]  R. Huber,et al.  Activation of Bacillus licheniformis alpha-amylase through a disorder-->order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. , 1998, Structure.

[115]  A. Brzozowski,et al.  Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 A resolution. , 1997, Biochemistry.

[116]  G Williamson,et al.  Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. , 1997, Structure.

[117]  H. Flint,et al.  Interrupted catalytic domain structures in xylanases from two distantly related strains of Prevotella ruminicola. , 1997, Biochimica et biophysica acta.

[118]  A. Salyers,et al.  Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron , 1997, Journal of bacteriology.

[119]  G J Davies,et al.  Nomenclature for sugar-binding subsites in glycosyl hydrolases. , 1997, The Biochemical journal.

[120]  A. Salyers,et al.  Contribution of a neopullulanase, a pullulanase, and an alpha-glucosidase to growth of Bacteroides thetaiotaomicron on starch , 1996, Journal of bacteriology.

[121]  C. Cambillau,et al.  Crystal structure of pig pancreatic alpha-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. , 1996, European journal of biochemistry.

[122]  C. Sander,et al.  Dali: a network tool for protein structure comparison. , 1995, Trends in biochemical sciences.

[123]  B. Svensson,et al.  Crystal and Molecular Structure of Barley α-Amylase , 1994 .

[124]  C. Davis,et al.  Manganese Metabolism in Rats: An Improved Methodology for Assessing Gut Endogenous Losses , 1993, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[125]  L. Thim,et al.  Calcium binding in alpha-amylases: an X-ray diffraction study at 2.1-A resolution of two enzymes from Aspergillus. , 1990, Biochemistry.

[126]  N. Mcneil The contribution of the large intestine to energy supplies in man. , 1984, The American journal of clinical nutrition.

[127]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[128]  G. L. Miller Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar , 1959 .

[129]  M. Maksimovic,et al.  Solution , 1902, The Mathematical Gazette.

[130]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[131]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[132]  L. Dijkhuizen,et al.  Structural and functional characterization of a family GH53 β-1,4-galactanase from Bacteroides thetaiotaomicron that facilitates degradation of prebiotic galactooligosaccharides. , 2019, Journal of structural biology.

[133]  R. Schmitz,et al.  Archaea Are Interactive Components of Complex Microbiomes. , 2018, Trends in microbiology.

[134]  J. Frick,et al.  Fungi as Part of the Microbiota and Interactions with Intestinal Bacteria. , 2018, Current topics in microbiology and immunology.

[135]  L. McKee Measuring Enzyme Kinetics of Glycoside Hydrolases Using the 3,5-Dinitrosalicylic Acid Assay. , 2017, Methods in molecular biology.

[136]  B. Svensson,et al.  Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions. , 2017, Methods in molecular biology.

[137]  A. Boraston,et al.  Quantitative approaches to the analysis of carbohydrate-binding module function. , 2012, Methods in enzymology.

[138]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[139]  G. Murshudov,et al.  BALBES: a molecular-replacement pipeline , 2007, Acta crystallographica. Section D, Biological crystallography.

[140]  Z. Fujimoto,et al.  Crystal structure of Bacillus subtilis alpha-amylase in complex with acarbose. , 2003, Journal of bacteriology.

[141]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[142]  W. Liebl,et al.  Thermotoga maritima AglA, an extremely thermostable NAD+-, Mn2+-, and thiol-dependent alpha-glucosidase. , 2000, Extremophiles : life under extreme conditions.

[143]  B. Svensson,et al.  Crystal and molecular structure of barley alpha-amylase. , 1994, Journal of molecular biology.

[144]  Lillian V. Holdeman,et al.  Anaerobe Laboratory manual , 1977 .