Bin Packing Approximation Algorithms: Combinatorial Analysis
暂无分享,去创建一个
[1] Richard J. Anderson,et al. Parallel Approximation Algorithms for Bin Packing , 1988, Inf. Comput..
[2] János Csirik,et al. On the worst-case performance of the NkF bin-packing heuristic , 1989, Acta Cybern..
[3] Michael J. Magazine,et al. Assembly line balancing as generalized bin packing , 1982, Oper. Res. Lett..
[4] David S. Johnson,et al. Near-optimal bin packing algorithms , 1973 .
[5] Edward G. Coffman,et al. A Tight Asymptotic Bound for Next-Fit-Decreasing Bin-Packing , 1981 .
[6] Andrew Chi-Chih Yao,et al. Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.
[7] Frank D. Murgolo. An Efficient Approximation Scheme for Variable-Sized Bin Packing , 1987, SIAM J. Comput..
[8] D. T. Lee,et al. A simple on-line bin-packing algorithm , 1985, JACM.
[9] D. T. Lee,et al. On-Line Bin Packing in Linear Time , 1989, J. Algorithms.
[10] Errol L. Lloyd,et al. Partially Dynamic bin Packing can be Solved Within 1 + \varepsilon in (Amortized) Polylogarithmic Time , 1997, Inf. Process. Lett..
[11] Frank M. Liang. A Lower Bound for On-Line Bin Packing , 1980, Inf. Process. Lett..
[12] André van Vliet. On the Asymptotic Worst Case Behavior of Harmonic Fit , 1996, J. Algorithms.
[13] H. E. Salzer,et al. The Approximation of Numbers as Sums of Reciprocals , 1947 .
[14] David S. Johnson,et al. A 71/60 theorem for bin packing , 1985, J. Complex..
[15] Edward G. Coffman,et al. Bin packing with divisible item sizes , 1987, J. Complex..
[16] Frank D. Murgolo. Anomalous behavior in bin packing algorithms , 1988, Discret. Appl. Math..
[17] Eugene L. Lawler,et al. Sequencing and scheduling: algorithms and complexity , 1989 .
[18] Michael A. Langston,et al. Online variable-sized bin packing , 1989, Discret. Appl. Math..
[19] Gerhard J. Woeginger. Improved Space for Bounded-Space, On-Line Bin-Packing , 1993, SIAM J. Discret. Math..
[20] Ronald L. Graham,et al. Bounds for certain multiprocessing anomalies , 1966 .
[21] R. Gomory,et al. A Linear Programming Approach to the Cutting-Stock Problem , 1961 .
[22] Barun Chandra. Does Randomization Help in On-Line Bin Packing? , 1992, Inf. Process. Lett..
[23] David B. Shmoys,et al. Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[24] G. S. Lueker,et al. Bin packing can be solved within 1 + ε in linear time , 1981 .
[25] R. Isaacs,et al. Applied Mathematics , 1901, Nature.
[26] Andrew Chi-Chih Yao,et al. New Algorithms for Bin Packing , 1978, JACM.
[27] Guochuan Zhang,et al. Bounded Space On-Line Variable-Sized Bin Packing , 1997, Acta Cybern..
[28] Hans Kellerer,et al. A 5/4 Linear Time Bin Packing Algorithm , 2000, J. Comput. Syst. Sci..
[29] David S. Johnson,et al. Fast Algorithms for Bin Packing , 1974, J. Comput. Syst. Sci..
[30] Yuval Rabani,et al. A Better Lower Bound for On-Line Scheduling , 1994, Inf. Process. Lett..
[31] Weizhen Mao,et al. Tight Worst-Case Performance Bounds for Next-k-Fit Bin Packing , 1993, SIAM J. Comput..
[32] David S. Johnson,et al. Fast Allocation Algorithms , 1972, SWAT.
[33] David S. Johnson,et al. Approximation Algorithms for Bin-Packing — An Updated Survey , 1984 .
[34] Herb Schwetman,et al. Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems , 1975, JACM.
[35] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[36] Jr. E. G. Coffman. An Introduction to Combinatorial Models of Dynamic Storage Allocation , 1983 .
[37] Donna J. Brown,et al. A Lower Bound for On-Line One-Dimensional Bin Packing Algorithms. , 1979 .
[38] Donald K. Friesen,et al. Tighter Bounds for the Multifit Processor Scheduling Algorithm , 1984, SIAM J. Comput..
[39] Jeffrey D. Ullman,et al. Worst-case analysis of memory allocation algorithms , 1972, STOC.
[40] Lap Mui Ann Chan,et al. Worst-case analyses, linear programming and the bin-packing problem , 1998, Math. Program..
[41] Edward F. Grove. Online bin packing with lookahead , 1995, SODA '95.
[42] Ronald L. Graham,et al. Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.
[43] Gerhard J. Woeginger,et al. New lower and upper bounds for on-line scheduling , 1994, Oper. Res. Lett..
[44] Joseph Y.-T. Leung,et al. Combinatorial analysis of an efficient algorithm for processor and storage allocation , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[45] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[46] Chak-Kuen Wong,et al. Bin Packing with Geometric Constraints in Computer Network Design , 1978, Oper. Res..
[47] Gerhard J. Woeginger,et al. On-line bin packing — A restricted survey , 1995, Math. Methods Oper. Res..
[48] J. B. G. Frenk,et al. A Simple Proof of Liang's Lower Bound for On-Line bin Packing and the Extension to the Parametric Case , 1993, Discret. Appl. Math..
[49] Gerhard J. Woeginger,et al. An On-Line Scheduling Heuristic With Better Worst Case Ratio Than Graham's List Scheduling , 1993, SIAM J. Comput..
[50] Brenda S. Baker,et al. A New Proof for the First-Fit Decreasing Bin-Packing Algorithm , 1985, J. Algorithms.
[51] G Galambos. Parametric lower bound for on-line bin-packing , 1986 .
[52] Leslie A. Hall,et al. Approximation algorithms for scheduling , 1996 .
[53] György Turán,et al. On the performance of on-line algorithms for partition problems , 1989, Acta Cybern..
[54] J. Baewicz,et al. A linear time algorithm for restricted bin packing and scheduling problems , 1983 .
[55] D. Simchi-Levi. New worst‐case results for the bin‐packing problem , 1994 .
[56] David R. Karger,et al. A better algorithm for an ancient scheduling problem , 1994, SODA '94.
[57] Ralph E. Gomory,et al. A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .
[58] Charles U. Martel. A linear time bin-packing algorithm , 1985 .
[59] Eugene L. Lawler,et al. Chapter 9 Sequencing and scheduling: Algorithms and complexity , 1993, Logistics of Production and Inventory.
[60] David S. Johnson,et al. Approximation Algorithms for Bin Packing Problems: A Survey , 1981 .
[61] Michael B. Richey,et al. Improved bounds for harmonic-based bin packing algorithms , 1991, Discret. Appl. Math..
[62] Susan Fera. Assmann. Problems in discrete applied mathematics , 1983 .
[63] Ronald L. Graham,et al. Bounds on multiprocessing anomalies and related packing algorithms , 1972, AFIPS '72 (Spring).
[64] János Csirik,et al. The Parametric Behavior of the First-Fit Decreasing Bin Packing Algorithm , 1993, J. Algorithms.
[65] David C. Fisher. Next-fit packs a list and its reverse into the same number of bins , 1988 .
[66] D. K. Friesen,et al. Variable Sized Bin Packing , 1986, SIAM J. Comput..
[67] Richard M. Karp,et al. An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[68] Guochuan Zhang,et al. A New Version of On-line Variable-sized Bin Packing , 1997, Discret. Appl. Math..
[69] Edward G. Coffman,et al. An Application of Bin-Packing to Multiprocessor Scheduling , 1978, SIAM J. Comput..
[70] David S. Johnson. The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.
[71] C. Kenyon. Best-fit bin-packing with random order , 1996, SODA '96.
[72] André van Vliet,et al. An Improved Lower Bound for On-Line Bin Packing Algorithms , 1992, Inf. Process. Lett..
[73] Jeffrey D. Ullman,et al. Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..
[74] Dorit S. Hochbaum,et al. Approximation Algorithms for NP-Hard Problems , 1996 .
[75] Joseph Y.-T. Leung,et al. On a Dual Version of the One-Dimensional Bin Packing Problem , 1984, J. Algorithms.
[76] Edward G. Coffman,et al. Probabilistic analysis of packing and partitioning algorithms , 1991, Wiley-Interscience series in discrete mathematics and optimization.
[77] David S. Johnson,et al. Bounded Space On-Line Bin Packing: Best Is Better than First , 1991, SODA '91.
[78] Philippe Flajolet,et al. Analysis of algorithms , 2000, Random Struct. Algorithms.
[79] Michael Randolph Garey,et al. Approximation algorithms for bin-packing , 1984 .
[80] Sartaj Sahni,et al. Algorithms for Scheduling Independent Tasks , 1976, J. ACM.
[81] János Csirik,et al. Online algorithms for a dual version of bin packing , 1988, Discret. Appl. Math..
[82] Solomon W. Golomb,et al. On Certain Nonlinear Recurring Sequences , 1963 .
[83] Michael A. Langston,et al. Analysis of a Compound bin Packing Algorithm , 1991, SIAM J. Discret. Math..
[84] Brenda S. Baker,et al. A 5/4 Algorithm for Two-Dimensional Packing , 1981, J. Algorithms.
[85] M. Yue. On the exact upper bound for the multifit processor scheduling algorithm , 1990 .
[86] Errol L. Lloyd,et al. A Fundamental Restriction on Fully Dynamic Maintenance of Bin Packing , 1996, Inf. Process. Lett..
[87] Amos Fiat,et al. New algorithms for an ancient scheduling problem , 1992, STOC '92.