Bin Packing Approximation Algorithms: Combinatorial Analysis

In the classical version of the bin packing problem one is given a list L = (a 1,...,a n ) of items (or elements) and an infinite supply of bins with capacity C. A function s(a i ) gives the size of item a i , and satisfies 0 < s(a i )≤C, 1 ≤ i ≤ n. The problem is to pack the items into a minimum number of bins under the constraint that the sum of the sizes of the items in each bin is no greater than C. In simpler terms, a set of numbers is to be partitioned into a minimum number of blocks subject to a sum constraint common to each block. We use the bin packing terminology, as it eases considerably the problem of describing and analyzing algorithms.

[1]  Richard J. Anderson,et al.  Parallel Approximation Algorithms for Bin Packing , 1988, Inf. Comput..

[2]  János Csirik,et al.  On the worst-case performance of the NkF bin-packing heuristic , 1989, Acta Cybern..

[3]  Michael J. Magazine,et al.  Assembly line balancing as generalized bin packing , 1982, Oper. Res. Lett..

[4]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[5]  Edward G. Coffman,et al.  A Tight Asymptotic Bound for Next-Fit-Decreasing Bin-Packing , 1981 .

[6]  Andrew Chi-Chih Yao,et al.  Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.

[7]  Frank D. Murgolo An Efficient Approximation Scheme for Variable-Sized Bin Packing , 1987, SIAM J. Comput..

[8]  D. T. Lee,et al.  A simple on-line bin-packing algorithm , 1985, JACM.

[9]  D. T. Lee,et al.  On-Line Bin Packing in Linear Time , 1989, J. Algorithms.

[10]  Errol L. Lloyd,et al.  Partially Dynamic bin Packing can be Solved Within 1 + \varepsilon in (Amortized) Polylogarithmic Time , 1997, Inf. Process. Lett..

[11]  Frank M. Liang A Lower Bound for On-Line Bin Packing , 1980, Inf. Process. Lett..

[12]  André van Vliet On the Asymptotic Worst Case Behavior of Harmonic Fit , 1996, J. Algorithms.

[13]  H. E. Salzer,et al.  The Approximation of Numbers as Sums of Reciprocals , 1947 .

[14]  David S. Johnson,et al.  A 71/60 theorem for bin packing , 1985, J. Complex..

[15]  Edward G. Coffman,et al.  Bin packing with divisible item sizes , 1987, J. Complex..

[16]  Frank D. Murgolo Anomalous behavior in bin packing algorithms , 1988, Discret. Appl. Math..

[17]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[18]  Michael A. Langston,et al.  Online variable-sized bin packing , 1989, Discret. Appl. Math..

[19]  Gerhard J. Woeginger Improved Space for Bounded-Space, On-Line Bin-Packing , 1993, SIAM J. Discret. Math..

[20]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[21]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[22]  Barun Chandra Does Randomization Help in On-Line Bin Packing? , 1992, Inf. Process. Lett..

[23]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[24]  G. S. Lueker,et al.  Bin packing can be solved within 1 + ε in linear time , 1981 .

[25]  R. Isaacs,et al.  Applied Mathematics , 1901, Nature.

[26]  Andrew Chi-Chih Yao,et al.  New Algorithms for Bin Packing , 1978, JACM.

[27]  Guochuan Zhang,et al.  Bounded Space On-Line Variable-Sized Bin Packing , 1997, Acta Cybern..

[28]  Hans Kellerer,et al.  A 5/4 Linear Time Bin Packing Algorithm , 2000, J. Comput. Syst. Sci..

[29]  David S. Johnson,et al.  Fast Algorithms for Bin Packing , 1974, J. Comput. Syst. Sci..

[30]  Yuval Rabani,et al.  A Better Lower Bound for On-Line Scheduling , 1994, Inf. Process. Lett..

[31]  Weizhen Mao,et al.  Tight Worst-Case Performance Bounds for Next-k-Fit Bin Packing , 1993, SIAM J. Comput..

[32]  David S. Johnson,et al.  Fast Allocation Algorithms , 1972, SWAT.

[33]  David S. Johnson,et al.  Approximation Algorithms for Bin-Packing — An Updated Survey , 1984 .

[34]  Herb Schwetman,et al.  Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems , 1975, JACM.

[35]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[36]  Jr. E. G. Coffman An Introduction to Combinatorial Models of Dynamic Storage Allocation , 1983 .

[37]  Donna J. Brown,et al.  A Lower Bound for On-Line One-Dimensional Bin Packing Algorithms. , 1979 .

[38]  Donald K. Friesen,et al.  Tighter Bounds for the Multifit Processor Scheduling Algorithm , 1984, SIAM J. Comput..

[39]  Jeffrey D. Ullman,et al.  Worst-case analysis of memory allocation algorithms , 1972, STOC.

[40]  Lap Mui Ann Chan,et al.  Worst-case analyses, linear programming and the bin-packing problem , 1998, Math. Program..

[41]  Edward F. Grove Online bin packing with lookahead , 1995, SODA '95.

[42]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[43]  Gerhard J. Woeginger,et al.  New lower and upper bounds for on-line scheduling , 1994, Oper. Res. Lett..

[44]  Joseph Y.-T. Leung,et al.  Combinatorial analysis of an efficient algorithm for processor and storage allocation , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[45]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[46]  Chak-Kuen Wong,et al.  Bin Packing with Geometric Constraints in Computer Network Design , 1978, Oper. Res..

[47]  Gerhard J. Woeginger,et al.  On-line bin packing — A restricted survey , 1995, Math. Methods Oper. Res..

[48]  J. B. G. Frenk,et al.  A Simple Proof of Liang's Lower Bound for On-Line bin Packing and the Extension to the Parametric Case , 1993, Discret. Appl. Math..

[49]  Gerhard J. Woeginger,et al.  An On-Line Scheduling Heuristic With Better Worst Case Ratio Than Graham's List Scheduling , 1993, SIAM J. Comput..

[50]  Brenda S. Baker,et al.  A New Proof for the First-Fit Decreasing Bin-Packing Algorithm , 1985, J. Algorithms.

[51]  G Galambos Parametric lower bound for on-line bin-packing , 1986 .

[52]  Leslie A. Hall,et al.  Approximation algorithms for scheduling , 1996 .

[53]  György Turán,et al.  On the performance of on-line algorithms for partition problems , 1989, Acta Cybern..

[54]  J. Baewicz,et al.  A linear time algorithm for restricted bin packing and scheduling problems , 1983 .

[55]  D. Simchi-Levi New worst‐case results for the bin‐packing problem , 1994 .

[56]  David R. Karger,et al.  A better algorithm for an ancient scheduling problem , 1994, SODA '94.

[57]  Ralph E. Gomory,et al.  A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .

[58]  Charles U. Martel A linear time bin-packing algorithm , 1985 .

[59]  Eugene L. Lawler,et al.  Chapter 9 Sequencing and scheduling: Algorithms and complexity , 1993, Logistics of Production and Inventory.

[60]  David S. Johnson,et al.  Approximation Algorithms for Bin Packing Problems: A Survey , 1981 .

[61]  Michael B. Richey,et al.  Improved bounds for harmonic-based bin packing algorithms , 1991, Discret. Appl. Math..

[62]  Susan Fera. Assmann Problems in discrete applied mathematics , 1983 .

[63]  Ronald L. Graham,et al.  Bounds on multiprocessing anomalies and related packing algorithms , 1972, AFIPS '72 (Spring).

[64]  János Csirik,et al.  The Parametric Behavior of the First-Fit Decreasing Bin Packing Algorithm , 1993, J. Algorithms.

[65]  David C. Fisher Next-fit packs a list and its reverse into the same number of bins , 1988 .

[66]  D. K. Friesen,et al.  Variable Sized Bin Packing , 1986, SIAM J. Comput..

[67]  Richard M. Karp,et al.  An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[68]  Guochuan Zhang,et al.  A New Version of On-line Variable-sized Bin Packing , 1997, Discret. Appl. Math..

[69]  Edward G. Coffman,et al.  An Application of Bin-Packing to Multiprocessor Scheduling , 1978, SIAM J. Comput..

[70]  David S. Johnson The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.

[71]  C. Kenyon Best-fit bin-packing with random order , 1996, SODA '96.

[72]  André van Vliet,et al.  An Improved Lower Bound for On-Line Bin Packing Algorithms , 1992, Inf. Process. Lett..

[73]  Jeffrey D. Ullman,et al.  Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..

[74]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[75]  Joseph Y.-T. Leung,et al.  On a Dual Version of the One-Dimensional Bin Packing Problem , 1984, J. Algorithms.

[76]  Edward G. Coffman,et al.  Probabilistic analysis of packing and partitioning algorithms , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[77]  David S. Johnson,et al.  Bounded Space On-Line Bin Packing: Best Is Better than First , 1991, SODA '91.

[78]  Philippe Flajolet,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[79]  Michael Randolph Garey,et al.  Approximation algorithms for bin-packing , 1984 .

[80]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[81]  János Csirik,et al.  Online algorithms for a dual version of bin packing , 1988, Discret. Appl. Math..

[82]  Solomon W. Golomb,et al.  On Certain Nonlinear Recurring Sequences , 1963 .

[83]  Michael A. Langston,et al.  Analysis of a Compound bin Packing Algorithm , 1991, SIAM J. Discret. Math..

[84]  Brenda S. Baker,et al.  A 5/4 Algorithm for Two-Dimensional Packing , 1981, J. Algorithms.

[85]  M. Yue On the exact upper bound for the multifit processor scheduling algorithm , 1990 .

[86]  Errol L. Lloyd,et al.  A Fundamental Restriction on Fully Dynamic Maintenance of Bin Packing , 1996, Inf. Process. Lett..

[87]  Amos Fiat,et al.  New algorithms for an ancient scheduling problem , 1992, STOC '92.