Fractional generalization of memristor and higher order elements

Abstract Fractional calculus generalizes integer order derivatives and integrals. Memristor systems generalize the notion of electrical elements. Both concepts were shown to model important classes of phenomena. This paper goes a step further by embedding both tools in a generalization considering complex-order objects. Two complex operators leading to real-valued results are proposed. The proposed class of models generate a broad universe of elements. Several combinations of values are tested and the corresponding dynamical behavior is analyzed.

[1]  R. Kurzweil,et al.  The Singularity Is Near: When Humans Transcend Biology , 2006 .

[2]  Raj Senani,et al.  On the realization of floating active elements , 1986 .

[3]  Carla M. A. Pinto,et al.  Complex order van der Pol oscillator , 2011 .

[4]  P. Subramaniam,et al.  Analog filter design , 1983, Proceedings of the IEEE.

[5]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[6]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[7]  José António Tenreiro Machado,et al.  Complex Order Biped Rhythms , 2011, Int. J. Bifurc. Chaos.

[8]  A. A. Potapov,et al.  Memristor and the integral quantum Hall effect , 2012 .

[9]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[10]  Manuel F. Silva,et al.  Discretization of Complex-order Algorithms for Control Applications , 2008 .

[11]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[12]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[13]  Igor Podlubny,et al.  Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation , 2001, math/0110241.

[14]  Arak M. Mathai,et al.  Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..

[15]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[16]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[17]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[18]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .

[19]  I. Schäfer,et al.  Modelling of lossy coils using fractional derivatives , 2008 .

[20]  Mason A. Porter,et al.  Fermi, Pasta, Ulam and the Birth of Experimental Mathematics , 2009 .

[21]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[22]  Van Valkenburg,et al.  Analog Filter Design , 1982 .

[23]  Carl F. Lorenzo,et al.  Conjugated-Order Differintegrals , 2005 .

[24]  José António Tenreiro Machado,et al.  Optimal Controllers with Complex Order Derivatives , 2013, J. Optim. Theory Appl..

[25]  Dimitri Jeltsema,et al.  Port-Hamiltonian Formulation of Systems With Memory , 2012, Proceedings of the IEEE.

[26]  Thomas P. Weissert,et al.  The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem , 1999 .

[27]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[28]  A. Luo,et al.  Fractional Dynamics and Control , 2011 .

[29]  David M. Auslander,et al.  The Memristor: A New Bond Graph Element , 1972 .

[30]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[31]  A. M. Soliman Realisation of frequency-dependent negative-resistance circuits using two capacitors and a single current conveyor , 1978 .

[32]  A. Gemant,et al.  XLV. On fractional differentials , 1938 .

[33]  Frank Y. Wang Memristor for Introductory Physics , 2008 .

[34]  YangQuan Chen,et al.  ANALOGUE FRACTIONAL-ORDER GENERALIZED MEMRISTIVE DEVICES , 2009 .

[35]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[36]  L. Chua Nonlinear circuit foundations for nanodevices. I. The four-element torus , 2003 .

[37]  Gary W. Bohannan,et al.  Analog Realization of a Fractional Control Element-Revisited , 2002 .

[38]  J. Machado Fractional-order derivative approximations in discrete-time control systems , 1998 .

[39]  G. Szentirmai,et al.  Electronic filter design handbook , 1982, Proceedings of the IEEE.

[40]  S. Westerlund Dead matter has memory , 1991 .

[41]  Electrical skin phenomena: a fractional calculus analysis , 2007 .

[42]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[43]  A. Antoniou Novel RC-active-network synthesis using generalized- immittance converters , 1970 .

[44]  S. C. BRADFORD,et al.  The Liesegang Phenomenon and Concretionary Structure in Rocks , 1916, Nature.

[45]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[46]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[47]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[48]  J. A. Tenreiro Machado,et al.  Fractional dynamics of a system with particles subjected to impacts , 2011 .

[49]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[50]  A. Oustaloup Systèmes asservis linéaires d'ordre fractionnaire : théorie et pratique , 1983 .

[51]  G. H. F. Ulrich II. On a meteoric stone found at Makariwa, near invercargill, New Zealand , 1893, Proceedings of the Royal Society of London.

[52]  G. W. Blair Analytical and Integrative Aspects of the Stress-Strain-Time Problem , 1944 .

[53]  R. Williams,et al.  How We Found The Missing Memristor , 2008, IEEE Spectrum.

[54]  Isabel S. Jesus,et al.  Development of fractional order capacitors based on electrolyte processes , 2009 .

[55]  Karabi Biswas,et al.  Realization of a Constant Phase Element and Its Performance Study in a Differentiator Circuit , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[56]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[57]  Massimiliano Di Ventra,et al.  Memristive model of amoeba learning. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  A. Gemant,et al.  A Method of Analyzing Experimental Results Obtained from Elasto‐Viscous Bodies , 1936 .

[59]  G. W. Blair The role of psychophysics in rheology , 1947 .

[60]  José António Tenreiro Machado,et al.  Complex-order dynamics in hexapod locomotion , 2006, Signal Process..

[61]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[62]  F. Tatom THE RELATIONSHIP BETWEEN FRACTIONAL CALCULUS AND FRACTALS , 1995 .

[63]  Dimitri Jeltsema,et al.  Memristive port-Hamiltonian Systems , 2010 .

[64]  Yangquan Chen,et al.  Fractional-order memristive systems , 2009, 2009 IEEE Conference on Emerging Technologies & Factory Automation.

[65]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[66]  B. West Fractional Calculus in Bioengineering , 2007 .

[67]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[68]  S. Westerlund,et al.  Capacitor theory , 1994 .

[69]  I. Podlubny Fractional differential equations , 1998 .

[70]  Jürgen Kurths,et al.  Fractional calculus and its applications , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[72]  St'ephane Dugowson,et al.  Les différentielles métaphysiques : histoire et philosophie de la généralisation de l'ordre de la dérivation , 1994 .

[73]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[74]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[75]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[76]  J. A. Tenreiro Machado,et al.  Complex-order forced van der Pol oscillator , 2012 .

[77]  S. Roy On the Realization of a Constant-Argument Immittance or Fractional Operator , 1967, IEEE Transactions on Circuit Theory.

[78]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[79]  K. Smith,et al.  A second-generation current conveyor and its applications , 1970, IEEE Transactions on Circuit Theory.

[80]  Leon O. Chua,et al.  Device modeling via nonlinear circuit elements , 1980 .

[81]  Ahmed M. Soliman,et al.  Two New Families of Floating FDNR Circuits , 2010, J. Electr. Comput. Eng..

[82]  Paul J. Nahin,et al.  Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age , 2002 .

[83]  Leonard T. Bruton,et al.  Network Transfer Functions Using the Concept of Frequency-Dependent Negative Resistance , 1969 .

[84]  Carl F. Lorenzo,et al.  Complex-Order Distributions , 2005 .

[85]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[86]  L. Chua Memristor-The missing circuit element , 1971 .

[87]  J. T. Tenreiro Machado,et al.  Fractional order inductive phenomena based on the skin effect , 2012 .

[88]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[89]  J. A. Tenreiro Machado,et al.  Fractional derivatives: Probability interpretation and frequency response of rational approximations , 2009 .