Composite quantile regression for correlated data

This study investigates composite quantile regression estimation for longitudinal data on the basis of quadratic inference functions. By incorporating the correlation within subjects, the proposed CQRQIF estimator has the advantages of both robustness and high estimation efficiency for a variety of error distributions. The theoretical properties of the resulting estimators are established. Given that the objective function is non-smooth and non-convex, an estimation procedure based on induced smoothing is developed. It is proved that the smoothed estimator is asymptotically equivalent to the original estimator. The weighted composite quantile regression estimation is also proposed to improve the estimation efficiency further in some situations. Extensive simulations are conducted to compare different estimators, and a real data analysis is used to illustrate their performances.

[1]  Runze Li,et al.  NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.

[2]  Torsten Hothorn,et al.  Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression , 2011 .

[3]  H. Zou,et al.  Composite quantile regression and the oracle Model Selection Theory , 2008, 0806.2905.

[4]  Naomi S. Altman,et al.  Quantile regression , 2019, Nature Methods.

[5]  Jianqing Fan,et al.  Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection , 2009, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[6]  R. Rigby,et al.  Generalized Additive Models for Location Scale and Shape (GAMLSS) in R , 2007 .

[7]  Xinyuan Song,et al.  Oracle model selection for nonlinear models based on weighted composite quantile regression accelerated failure time model , 2012 .

[8]  P. X. Song,et al.  Correlated data analysis : modeling, analytics, and applications , 2007 .

[9]  Liya Fu,et al.  Efficient Estimation for Rank‐Based Regression with Clustered Data , 2012, Biometrics.

[10]  Hua Liang,et al.  Partially linear single index models for repeated measurements , 2014, J. Multivar. Anal..

[11]  B. M. Brown,et al.  Standard errors and covariance matrices for smoothed rank estimators , 2005 .

[12]  Weiping Zhang,et al.  Smoothing combined estimating equations in quantile regression for longitudinal data , 2014, Stat. Comput..

[13]  A. Qu,et al.  Estimation and model selection in generalized additive partial linear models for correlated data with diverging number of covariates , 2014, 1405.6030.

[14]  Liya Fu,et al.  Rank regression for analysis of clustered data: A natural induced smoothing approach , 2010, Comput. Stat. Data Anal..

[15]  You-Gan Wang,et al.  Weighted Rank Regression for Clustered Data Analysis , 2008, Biometrics.

[16]  R. Rigby,et al.  Generalized additive models for location, scale and shape , 2005 .

[17]  Xuejun Jiang,et al.  Weighted Composite Quantile Regression Estimation of DTARCH Models , 2014 .

[18]  Heng Lian,et al.  Quadratic inference functions for partially linear single-index models with longitudinal data , 2013, J. Multivar. Anal..

[19]  Liya Fu,et al.  Quantile regression for longitudinal data with a working correlation model , 2012, Comput. Stat. Data Anal..

[20]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[21]  P. Diggle Analysis of Longitudinal Data , 1995 .

[22]  Peter X-K Song,et al.  Quadratic inference functions in marginal models for longitudinal data , 2009, Statistics in medicine.

[23]  Huazhen Lin,et al.  Semiparametric Regression Analysis of Longitudinal Skewed Data , 2014 .

[24]  Yujie Gai,et al.  Weighted local linear composite quantile estimation for the case of general error distributions , 2013 .

[25]  Zhongyi Zhu,et al.  Partial Linear Models for Longitudinal Data Based on Quadratic Inference Functions , 2008 .

[26]  Runze Li,et al.  Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression , 2010 .

[27]  A. Qu,et al.  Assessing robustness of generalised estimating equations and quadratic inference functions , 2004 .

[28]  Yanlin Tang,et al.  Improving estimation efficiency in quantile regression with longitudinal data , 2015 .

[29]  Benjamin Hofner,et al.  Generalized additive models for location, scale and shape for high dimensional data—a flexible approach based on boosting , 2012 .

[30]  A. Qu,et al.  Consistent Model Selection for Marginal Generalized Additive Model for Correlated Data , 2010 .

[31]  B. Lindsay,et al.  Improving generalised estimating equations using quadratic inference functions , 2000 .

[32]  Runze Li,et al.  Quadratic Inference Functions for Varying‐Coefficient Models with Longitudinal Data , 2006, Biometrics.