On the existence and uniqueness of JML estimates for the partial credit model

A necessary and sufficient condition is given in this paper for the existence and uniqueness of the maximum likelihood (the so-called joint maximum likelihood) estimate of the parameters of the Partial Credit Model. This condition is stated in terms of a structural property of the pattern of the data matrix that can be easily verified on the basis of a simple iterative procedure. The result is proved by using an argument of Haberman (1977).

[1]  Mark Wilson,et al.  The partial credit model and null categories , 1993 .

[2]  Erling B. Andersen,et al.  Discrete Statistical Models with Social Science Applications. , 1980 .

[3]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[4]  Shelby J. Haberman,et al.  Maximum Likelihood Estimates in Exponential Response Models , 1977 .

[5]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[6]  Gerhard H. Fischer,et al.  On the existence and uniqueness of maximum-likelihood estimates in the Rasch model , 1981 .

[7]  R. Hambleton,et al.  Handbook of Modern Item Response Theory , 1997 .

[8]  Ronald K. Hambleton,et al.  Item Response Theory: Brief History, Common Models, and Extensions , 1997 .

[9]  S. Haberman,et al.  The analysis of frequency data , 1974 .

[10]  Erling B. Andersen,et al.  Polytomous Rasch Models and their Estimation , 1995 .

[11]  Malay Ghosh,et al.  Inconsistent maximum likelihood estimators for the Rasch model , 1995 .

[12]  G. Masters,et al.  Rating scale analysis , 1982 .

[13]  O. Barndorff-Nielsen Parametric statistical models and likelihood , 1988 .

[14]  Gerhard H. Fischer,et al.  An extension of the rating scale model with an application to the measurement of change , 1991 .

[15]  P. W. Zehna Invariance of Maximum Likelihood Estimators , 1966 .

[16]  E. B. Andersen,et al.  Residualanalysis in the polytomous rasch model , 1995 .

[17]  E. B. Andersen,et al.  CONDITIONAL INFERENCE FOR MULTIPLE‐CHOICE QUESTIONNAIRES , 1973 .

[18]  G. H. Fischer,et al.  An extension of the partial credit model with an application to the measurement of change , 1994 .

[19]  Erling B. Andersen,et al.  The Rating Scale Model , 1997 .

[20]  M. Jacobsen Existence and unicity of MLEs in discrete exponential family distributions , 1989 .

[21]  G. Masters A rasch model for partial credit scoring , 1982 .