Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species

Allometric equations were developed for mature trees of 10 deciduous species (Acer rubrum L., Betula lenta L., Carya spp., Cornus florida L., Liriodendron tulipifera L., Oxydendrum arboreum(L.) DC., Quercus alba L., Quercus coccinea Muenchh., Quercus prinus L., and Quercus rubra L.) at the Coweeta Hydrologic Laboratory in western North Carolina, U.S.A. These equations included the following dependent variables: stem wood mass, stem bark mass, branch mass, total wood mass, foliage mass, total biomass, foliage area, stem surface area, sapwood volume, and total tree volume. High correlation coefficients ( R 2 ) were observed for all variables versus stem diameter, with the highest being for total tree biomass, which ranged from 0.981 for Oxydendrum arboreumto 0.999 for Quercus coccinea. Foliage area had the lowest R 2 values, ranging from 0.555 for Quercus alba to 0.962 for Betula lenta. When all species were combined, correlation coefficients ranged from 0.822 for foliage area to 0.986 for total wood mass, total tree biomass, and total tree volume. Species with ring versus diffuse/semiring porous wood anatomy exhibited higher leaf area with a given cross-sectional sapwood area as well as lower total sapwood volume. Liriodendron tulipifera contained one of the highest foliar nitrogen concentrations and had consistently low branch, bark, sapwood, and heartwood nitrogen contents. For a tree diameter of 50 cm, Carya spp. exhibited the highest total nitrogen content whereas Liriodendron tulipifera exhibited the lowest. Resume : Des equations allometriques ont ete developpees pour les arbres matures de 10 especes a feuilles caduques (Acer rubrum L., Betula lenta L., Carya spp., Cornus florida L., Liriodendron tulipifera L., Oxydendrum arboreum(L.) DC., Quercus alba L., Quercus coccinea Muenchh., Quercus prinus L. et Quercus rubra L.) au laboratoire hydrologique de Coweeta, dans l'ouest de la Caroline du Nord, aux Etats-Unis. Ces equations incluaient les variables dependantes suivantes : la masse du bois dans le tronc, la masse de l'ecorce sur le tronc, la masse des branches, la masse totale du bois, la masse du feuillage, la biomasse totale, la surface foliaire, la superficie de la surface du tronc, le volume de bois d'aubier et le volume total de l'arbre. Toutes les variables etaient etroitement correlees ( R 2 ) avec le

[1]  R. Benyon,et al.  Variation in sapwood area and throughfall with forest age in mountain ash (Eucalyptus regnans F. Muell.) , 1997 .

[2]  S. Gower,et al.  Aboveground net primary production decline with stand age: potential causes. , 1996, Trends in ecology & evolution.

[3]  R. Benyon,et al.  Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. , 1995, Tree physiology.

[4]  C. Field,et al.  Scaling Physiological Processes: Leaf to Globe , 1995 .

[5]  M. Abrams,et al.  Seasonal ecophysiology and leaf morphology of four successional Pennsylvania barrens species in open versus understory environments , 1993 .

[6]  Dennis D. Baldocchi,et al.  5 – Scaling Water Vapor and Carbon Dioxide Exchange from Leaves to a Canopy: Rules and Tools , 1993 .

[7]  S. Gower,et al.  Aboveground nitrogen and phosphorus use by five plantation-grown trees with different leaf longevities , 1991 .

[8]  M. G. Ryan,et al.  Effects of Climate Change on Plant Respiration. , 1991, Ecological applications : a publication of the Ecological Society of America.

[9]  M. Abrams Adaptations and responses to drought in Quercus species of North America. , 1990, Tree physiology.

[10]  Michael G. Ryan,et al.  Growth and maintenance respiration in stems of Pinuscontorta and Piceaengelmannii , 1990 .

[11]  M. G. Ryan Sapwood volume for three subalpine conifers: predictive equations and ecological implications , 1989 .

[12]  J. E. Douglass,et al.  History of Coweeta , 1988 .

[13]  M. Velbel Weathering and Soil-Forming Processes , 1988 .

[14]  L. Swift,et al.  Climatology and Hydrology , 1988 .

[15]  Wayne T. Swank,et al.  Forest Hydrology and Ecology at Coweeta , 1988, Ecological Studies.

[16]  M. G. Ryan,et al.  Physiographic, stand, and environmental effects on individual tree growth and growth efficiency in subalpine forests. , 1986, Tree physiology.

[17]  M. Tyree,et al.  Water stress induced cavitation and embolism in some woody plants , 1986 .

[18]  Richard H. Waring,et al.  Forest Ecosystems: Concepts and Management , 1985 .

[19]  A. Clark,et al.  Weight, volume, and physical properties of major hardwood species in the Southern Appalachian mountains , 1985 .

[20]  D. Sprugel,et al.  Correcting for Bias in Log‐Transformed Allometric Equations , 1983 .

[21]  Richard H. Waring,et al.  Application of the pipe model theory to predict canopy leaf area. , 1982 .

[22]  M. Kaufmann,et al.  The relationship of leaf area and foliage biomass to sapwood conducting area in four subalpine forest tree species , 1981 .

[23]  R. Waring,et al.  Stem Growth per Unit of Leaf Area: A Measure of Tree Vigor , 1980 .

[24]  T. Hinckley,et al.  Foliar Weight and Area Related to Current Sapwood Area in Oak , 1979 .

[25]  E. Buckner,et al.  Yellow-Poplar: A Component of Climax Forests? , 1978 .

[26]  F. Day,et al.  Seasonal nutrient dynamics in the vegetation on a southern Appalachian watershed , 1977 .

[27]  R. Waring,et al.  Evaluating stem conducting tissue as an estimator of leaf area in four woody angiosperms , 1977 .

[28]  M. Zimmermann,et al.  Trees: Structure and Function. , 1972 .

[29]  J. Heinrichs,et al.  Improved technique for determining the volume of irregularly shaped wood blocks. , 1970 .

[30]  H. Lyr,et al.  The physiology of woody plants. , 1967 .

[31]  T. Kira,et al.  A QUANTITATIVE ANALYSIS OF PLANT FORM-THE PIPE MODEL THEORY : I.BASIC ANALYSES , 1964 .

[32]  Irving B. Sachs,et al.  Color tests for differentiating heartwood and sapwood in certain softwood tree species , 1962 .

[33]  W. Doolittle Site Index Comparisons for Several Forest Species in the Southern Appalachians1 , 1958 .

[34]  R. Firth Function , 1955, Yearbook of Anthropology.