On Local Convergence of Alternating Schemes for Optimization of Convex Problems in the Tensor Train Format
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] Ivan V. Oseledets,et al. Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..
[3] J. Ballani,et al. Black box approximation of tensors in hierarchical Tucker format , 2013 .
[4] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[5] S. White. Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.
[6] Antonio Falcó,et al. On Minimal Subspaces in Tensor Representations , 2012, Found. Comput. Math..
[7] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[8] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[9] Claude Klöckl,et al. The density matrix renormalization group on tensor networks , 2013 .
[10] Johannes Weissinger,et al. Verallgemeinerungen des Seidelschen Iterationsverfahrens. Herrn R. v. Mises zum 70. Geburtstag gewidmet , 1953 .
[11] T. Schulte-Herbrüggen,et al. Exploiting matrix symmetries and physical symmetries in matrix product states and tensor trains , 2013, 1301.0746.
[12] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[13] J I Cirac,et al. Renormalization-group transformations on quantum states. , 2004, Physical review letters.
[14] Reinhold Schneider,et al. Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..
[15] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[16] Reinhold Schneider,et al. Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..
[17] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[18] Reinhold Schneider,et al. On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.
[19] Berkant Savas,et al. Perturbation Theory and Optimality Conditions for the Best Multilinear Rank Approximation of a Tensor , 2011, SIAM J. Matrix Anal. Appl..
[20] André Uschmajew,et al. Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..
[21] J. Ortega,et al. Nonlinear Difference Equations and Gauss-Seidel Type Iterative Methods , 1966 .
[22] Antonio Falcó,et al. Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces , 2011, Numerische Mathematik.
[23] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[24] Dajana Conte,et al. Mathematical Modelling and Numerical Analysis an Error Analysis of the Multi-configuration Time-dependent Hartree Method of Quantum Dynamics , 2022 .
[25] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .
[26] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[27] James C. Bezdek,et al. Convergence of Alternating Optimization , 2003, Neural Parallel Sci. Comput..
[28] Lars Grasedyck,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .
[29] Bart Vandereycken,et al. The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.
[30] Daniel Kressner,et al. Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..
[31] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[32] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[33] Young-Ju,et al. CONVERGENCE ANALYSIS ON ITERATIVE METHODS FOR SEMIDEFINITE SYSTEMS , 2008 .
[34] S. Schechter. ITERATION METHODS FOR NONLINEAR PROBLEMS , 1962 .
[35] H. Keller. On the Solution of Singular and Semidefinite Linear Systems by Iteration , 1965 .
[36] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[37] Reinhold Schneider,et al. Variational calculus with sums of elementary tensors of fixed rank , 2012, Numerische Mathematik.
[38] Jinchao Xu,et al. On the Convergence of Iterative Methods for Semidefinite Linear Systems , 2006, SIAM J. Matrix Anal. Appl..
[39] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[40] B. Khoromskij,et al. DMRG+QTT approach to computation of the ground state for the molecular Schrödinger operator , 2010 .
[41] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[42] J. Dieudonne. Treatise on Analysis , 1969 .
[43] Wolfgang Hackbusch,et al. An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..
[44] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[45] Othmar Koch,et al. Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..
[46] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.