Branched networks by directed assembly of shape anisotropic magnetic particles.

The directed assembly of shape anisotropic magnetic particles into targeted macrostructures requires judicious particle design. We present a framework to understand the self-assembly of magnetic non-Brownian H-shaped particles and the formation of branched networks under an applied magnetic field. A finite element integration (FEI) method is developed to identify the preferred particle orientation (relative to the applied field) at different values of the geometric parameters defining H shapes, and used to construct a phase diagram to generalize the results. Theoretical predictions are validated by comparing with experiments performed using magnetic hydrogels synthesized using stop-flow lithography (SFL). We demonstrate the ability of H-shaped particles to form chains parallel to the field that can thicken in a direction orthogonal to the field, and in some cases with branching. The assembly of a suspension containing H-shaped particles, or rods, or a combination of both, is reported.

[1]  Tierui Zhang,et al.  Superparamagnetic composite colloids with anisotropic structures. , 2007, Journal of the American Chemical Society.

[2]  Chekesha M. Liddell,et al.  Magnetically responsive and hollow colloids from nonspherical core–shell particles of peanut-like shape , 2009 .

[3]  Dhananjay Dendukuri,et al.  Stop-flow lithography in a microfluidic device. , 2007, Lab on a chip.

[4]  Janine Nunes,et al.  Electrically driven alignment and crystallization of unique anisotropic polymer particles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[5]  Yasuhiro Sakamoto,et al.  Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes , 2007, Proceedings of the National Academy of Sciences.

[6]  Liu,et al.  Simulation of the formation of nonequilibrium structures in magnetorheological fluids subject to an external magnetic field. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  J. Heller,et al.  The behavior of unicellular organisms in an electromagnetic field , 1960 .

[8]  Ki Wan Bong,et al.  Magnetic barcoded hydrogel microparticles for multiplexed detection. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[9]  J. Vermant,et al.  Directed self-assembly of nanoparticles. , 2010, ACS nano.

[10]  T. Mayer,et al.  Synchronous electrorotation of nanowires in fluid. , 2006, Nano letters.

[11]  Y. Qi,et al.  Influences of geometry of particles on electrorheological fluids , 2002 .

[12]  E. Andablo-Reyes,et al.  Dynamic rheology of sphere- and rod-based magnetorheological fluids. , 2009, The Journal of chemical physics.

[13]  Kai Song,et al.  Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self‐Assembly in Magnetic Field , 2009 .

[14]  Sumit Gangwal,et al.  Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[15]  R. Armstrong,et al.  The rotation of a suspended axisymmetric ellipsoid in a magnetic field , 1987 .

[16]  H P Schwan,et al.  Response of nonspherical biological particles to alternating electric fields. , 1966, Biophysical journal.

[17]  M. Ersoz,et al.  Fabrication of novel anisotropic magnetic microparticles , 2009 .

[18]  D. Klingenberg,et al.  Magnetorheological fluids: a review , 2011 .

[19]  Xin Zhang,et al.  Oriented and Vectorial Patterning of Cardiac Myocytes Using a Microfluidic Dielectrophoresis Chip—Towards Engineered Cardiac Tissue With Controlled Macroscopic Anisotropy , 2006, Journal of Microelectromechanical Systems.

[20]  R. Zallen,et al.  The Physics of Amorphous Solids: ZALLEN:PHYSICS OF AMORPHO O-BK , 2005 .

[21]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[22]  R. Frankel,et al.  Magnetosome formation in prokaryotes , 2004, Nature Reviews Microbiology.

[23]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[24]  Daniel J. Klingenberg,et al.  Magnetorheology: Applications and challenges , 2001 .

[25]  Dae Kun Hwang,et al.  Multifunctional superparamagnetic Janus particles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[26]  George M. Whitesides,et al.  Dynamic Aggregation of Chiral Spinners , 2002, Science.

[27]  Norman M. Wereley,et al.  Magnetorheology of submicron diameter iron microwires dispersed in silicone oil , 2008 .

[28]  M. Shaw,et al.  Studies of ER Fluids Featuring Rodlike Particles , 1996 .

[29]  R. Superfine,et al.  Multifunctional shape and size specific magneto-polymer composite particles. , 2010, Nano letters.

[30]  T. A. Hatton,et al.  Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[31]  Stephanie H Lee,et al.  Anisotropic magnetic colloids: a strategy to form complex structures using nonspherical building blocks. , 2009, Small.

[32]  Pietro Tierno,et al.  Overdamped dynamics of paramagnetic ellipsoids in a precessing magnetic field. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  T. A. Hatton,et al.  Rigid, superparamagnetic chains of permanently linked beads coated with magnetic nanoparticles. Synthesis and rotational dynamics under applied magnetic fields. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[34]  M. Shaw,et al.  Enhanced electrorheological fluids using anisotropic particles , 1998 .

[35]  Orlin D. Velev,et al.  Programmed assembly of metallodielectric patchy particles in external AC electric fields , 2010 .

[36]  Xiaopeng Zhao,et al.  Electrorheological fluids based on nano-fibrous polyaniline , 2008 .

[37]  H. Ogura,et al.  Electrorheological behavior of whisker suspensions under oscillatory shear , 2007 .

[38]  Norman M. Wereley,et al.  Dimorphic magnetorheological fluids: exploiting partial substitution of microspheres by nanowires , 2008 .

[39]  Andrew N. Vavreck,et al.  Influence of Particle Shape on the Properties of Magnetorheological Fluids , 2007 .

[40]  Siyoung Q. Choi,et al.  Synthesis of Multifunctional Micrometer‐Sized Particles with Magnetic, Amphiphilic, and Anisotropic Properties , 2011, Advanced materials.