Hf-W chronometry of primitive achondrites

[1]  K. Lodders Solar System Abundances of the Elements , 2010, 1010.2746.

[2]  T. Grove,et al.  182Hf–182W chronometry and early differentiation of the ureilite parent body , 2009 .

[3]  F. Nimmo,et al.  Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets , 2009 .

[4]  C. Maden,et al.  Hf-W thermochronometry: II. Accretion and thermal history of the acapulcoite-lodranite parent body , 2009 .

[5]  H. Palme,et al.  Hf-W chronometry of the IAB iron meteorite parent body , 2009 .

[6]  D. Ebel,et al.  Hf–W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals , 2008 .

[7]  J. Masarik,et al.  Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling , 2008 .

[8]  C. Maden,et al.  Hf-W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body , 2008 .

[9]  Der-Chuen Lee 182Hf‐182W chronometry and the early evolution history in the acapulcoite‐lodranite parent body , 2008 .

[10]  R. Wieler,et al.  HF-W CHRONOMETRY OF AUBRITES AND THE EVOLUTION OF PLANETARY BODIES. M. Peti- , 2008 .

[11]  P. Renne,et al.  40Ar–39Ar dating of plagioclase grain size separates from silicate inclusions in IAB iron meteorites and implications for the thermochronological evolution of the IAB parent body , 2008 .

[12]  M. Bizzarro,et al.  Hafnium–tungsten chronometry of angrites and the earliest evolution of planetary objects , 2007 .

[13]  A. Yamaguchi,et al.  The Crystallization Age of Eucrite Zircon , 2007, Science.

[14]  A. Rubin Petrogenesis of acapulcoites and lodranites : A shock-melting model , 2007 .

[15]  F. Albarède,et al.  Pb–Pb dating constraints on the accretion and cooling history of chondrites , 2007 .

[16]  R. Wieler,et al.  Correlated helium-3 and tungsten isotopes in iron meteorites: Quantitative cosmogenic corrections and planetesimal formation times , 2006 .

[17]  Alessandro Morbidelli,et al.  Iron meteorites as remnants of planetesimals formed in the terrestrial planet region , 2006, Nature.

[18]  Chris J. Hawkesworth,et al.  Hf-W evidence for rapid differentiation of iron meteorite parent bodies , 2006 .

[19]  T. Kleine,et al.  Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites , 2005 .

[20]  H. Haack,et al.  Rapid Timescales for Accretion and Melting of Differentiated Planetesimals Inferred from 26Al-26Mg Chronometry , 2005 .

[21]  Y. Amelin,et al.  U-Pb Age of the Acapulco Phosphate: Testing the Calibration of the I-Xe Chronometer , 2005 .

[22]  O. Eugster,et al.  Cosmic-ray exposure ages of four acapulcoites and two differentiated achondrites and evidence for a two-layer structure of the acapulcoite/lodranite parent asteroid , 2005 .

[23]  J. Birck,et al.  Stony-iron meteorites: History of the metal phase according to tungsten isotopes , 2005 .

[24]  T. Kleine,et al.  The W isotope composition of eucrite metals: constraints on the timing and cause of the thermal metamorphism of basaltic eucrites , 2005 .

[25]  D. Garrison,et al.  Ar‐Ar and I‐Xe ages and the thermal history of IAB meteorites , 2005 .

[26]  M. Bichler,et al.  New half-life measurement of 182Hf: improved chronometer for the early solar system. , 2004, Physical review letters.

[27]  T. Kleine,et al.  182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars , 2004 .

[28]  J. Birck,et al.  Tungsten isotopes in eucrites revisited and the initial 182Hf/180Hf of the solar system based on iron meteorite data , 2004 .

[29]  W. Boynton,et al.  Evolution and classification of acapulcoites and lodranites from a chemical point of view , 2004 .

[30]  M. Trieloff,et al.  Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry , 2003, Nature.

[31]  R. Wieler,et al.  The Influence of Cosmic-Ray Production on Extinct Nuclide Systems. New Results from Improved Model Calculations , 2003 .

[32]  Y. Amelin,et al.  Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions , 2002, Science.

[33]  F. Albarède,et al.  A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites , 2002, Nature.

[34]  J. Wasson,et al.  The IAB Iron-Meteorite Complex: A Group, Five Subgroups, Numerous Grouplets, Closely Related, Mainly Formed by Crystal Segregation in Rapidly Cooling Melts , 2002 .

[35]  D. Günther,et al.  Niobium-Zirconium Chronometry and Early Solar System Development , 2002, Science.

[36]  H. Wiesmann,et al.  Rb-Sr and Sm-Nd Ages of Plagioclase-Diopside-rich Material in Caddo County IAB Iron Meteorite , 2002 .

[37]  M. Trieloff,et al.  Comment on “40Ar/39Ar age of plagioclase from Acapulco meteorite and the problem of systematic errors in cosmochronology” by Paul R. Renne , 2001 .

[38]  R. Clayton,et al.  Dhofar 125: A New Acapulcoite from Oman , 2001 .

[39]  W. Hopfe,et al.  The metallographic cooling rate method revised: Application to iron meteorites and mesosiderites , 2001 .

[40]  J. Birck,et al.  182 Hf– 182 W systematics in eucrites: the puzzle of iron segregation in the early solar system , 2000 .

[41]  K. Keil,et al.  A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB‐Winonaite parent body , 2000 .

[42]  C. Floss Complexities on the acapulcoite‐lodranite parent body: Evidence from trace element distributions in silicate minerals , 2000 .

[43]  A. Yamaguchi,et al.  Search for Tungsten-182 Excess in Zircons from the Eucrite Elephant Moraine 90020 , 2000 .

[44]  P. Renne 40Ar/39Ar age of plagioclase from Acapulco meteorite and the problem of systematic errors in cosmochronology , 2000 .

[45]  K. Keil,et al.  A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism , 1998 .

[46]  R. Walker,et al.  182W and 187Re-187Os Systematics of Iron Meteorites: Chronology for Melting, Differentiation, and Crystallization in Asteroids , 1998 .

[47]  E. Jessberger,et al.  The cooling history of the Acapulco meteorite as recorded by the 244Pu and 40Ar-39Ar chronometers , 1997 .

[48]  R. Clayton,et al.  A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors , 1997 .

[49]  K. Keil,et al.  PARTIAL MELTING AND MELT MIGRATION IN THE ACAPULCOITE-LODRANITE PARENT BODY , 1997 .

[50]  R. Clayton,et al.  A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting , 1996 .

[51]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[52]  M. Lindstrom,et al.  Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin , 1996 .

[53]  A. Halliday,et al.  Hafnium–tungsten chronometry and the timing of terrestrial core formation , 1995, Nature.

[54]  J. Zipfel,et al.  Chemical composition and origin of the Acapulco meteorite , 1995 .

[55]  M. Spilde,et al.  Orthopyroxene as a recorder of primitive achondrite petrogenesis: Major-, minor-, and trace-element systematics of orthopyroxene in Lodran. [Abstract only] , 1994 .

[56]  J. Goldstein,et al.  A comparison of metallographic cooling rate methods used in meteorites , 1994 .

[57]  G. Manhès,et al.  U-Pb Study of the Acapulco Meteorite , 1992 .

[58]  M. Grady,et al.  Mount Morris (Wisconsin) - A fragment of the IAB iron Pine River , 1988 .

[59]  H. Wänke,et al.  The Acapulco meteorite: Chemistry, mineralogy and irradiation effects , 1981 .

[60]  J. Herndon,et al.  ALUMINUM-26 AS A PLANETOID HEAT SOURCE IN THE EARLY SOLAR SYSTEM , 1977 .

[61]  E. Jarosewich,et al.  The Winona meteorite , 1967 .

[62]  H. Urey ABUNDANCES OF THE ELEMENTS , 1952 .

[63]  T. Mccoy,et al.  Systematics and Evaluation of Meteorite Classification , 2006 .

[64]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[65]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[66]  H. Haack,et al.  Metallographic Cooling Rates Of Iab Iron-Meteorites , 1995 .

[67]  K. Heumann,et al.  Tungsten isotope ratio determination by negative thermal ionization mass spectrometry , 1991 .

[68]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .