Full Rank Tilings of Finite Abelian Groups

A tiling of a finite abelian group $G$ is a pair $(V,A)$ of subsets of $G$ such that $0$ is in both $V$ and $A$ and every $g\in G$ can be uniquely written as $g=v+a$ with $v\in V$ and $a\in A$. Tilings are a special case of normed factorizations, a type of factorization by subsets that was introduced by Hajos [Casopsis Puest Path. Rys., 74, (1949), pp. 157-162]. A tiling is said to be full rank if both $V$ and $A$ generate $G$. Cohen, Litsyn, Vardy, and Zemor [SIAM J. Discrete Math., 9 (1996), pp. 393-412] proved that any tiling of $\Z_2^n$ can be decomposed into full rank and trivial tilings. We generalize this decomposition from $\Z_2^n$ to all finite abelian groups. We also show how to generate larger full rank tilings from smaller ones, and give two sufficient conditions for a group to admit a full rank tiling, showing that many groups do admit them. In particular, we prove that if $p\geq 5$ is a prime and $n\geq 4$, then $\Z_p^n$ admits a full rank tiling. This bound on $n$ is tight for $5\leq p\leq 11$, and is conjectured to be tight for all primes $p$.

[1]  Alexander Vardy,et al.  Tilings of Binary Spaces , 1996, SIAM J. Discret. Math..

[2]  S. Szabó Groups with the Rédei property , 1998 .

[3]  S. Szabó,et al.  Solution to a problem of A. D. sands , 1995 .

[4]  Kevin T. Phelps,et al.  Ranks of q-Ary 1-Perfect Codes , 2002, Des. Codes Cryptogr..

[5]  de Ng Dick Bruijn On the Factorization of Finite Abelian Groups , 1953 .

[6]  L. Rédei,et al.  Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós , 1965 .

[7]  A. D. Sands On the factorisation of finite abelian groups. II , 1962 .

[8]  S. K. Stein Tiling space by congruent polyhedra , 1974 .

[9]  S. Szabó,et al.  Factoring groups having periodic maximal subgroups , 1999 .

[10]  Kevin T. Phelps,et al.  Kernels and p-Kernels of pr-ary 1-Perfect Codes , 2005, Des. Codes Cryptogr..

[11]  Georg Hajós,et al.  Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem Würfelgitter , 1942 .

[12]  P. Östergård,et al.  Resolving the Existence of Full-Rank Tilings of Binary Hamming Spaces , 2005, SIAM J. Discret. Math..

[13]  Bernhard Ganter,et al.  Algebraic techniques for nonlinear codes , 1983, Comb..

[14]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[15]  S. Szabó,et al.  Factoring abelian groups and tiling binary spaces , 1997 .

[16]  Ari Tra htenbergy,et al.  Full-rank Tilings of F 82 Do Not Exist , 2003 .

[17]  Kevin T. Phelps,et al.  Kernels of nonlinear Hamming codes , 1995, Des. Codes Cryptogr..

[18]  Sándor Szabó A type of factorization of finite Abelian groups , 1985, Discret. Math..

[19]  Alexander Vardy,et al.  Full-Rank Tilings of $\mathbbF^8_\!2$ Do Not Exist , 2003, SIAM J. Discret. Math..

[20]  T. Etzion,et al.  On perfect codes and tilings: problems and solutions , 1997, Proceedings of IEEE International Symposium on Information Theory.

[21]  Sándor Szabó,et al.  Factoring elementary groups of prime cube order into subsets , 1998, Math. Comput..

[22]  Gábor Fejes Tóth,et al.  Packing and Covering , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..