Full Rank Tilings of Finite Abelian Groups
暂无分享,去创建一个
[1] Alexander Vardy,et al. Tilings of Binary Spaces , 1996, SIAM J. Discret. Math..
[2] S. Szabó. Groups with the Rédei property , 1998 .
[3] S. Szabó,et al. Solution to a problem of A. D. sands , 1995 .
[4] Kevin T. Phelps,et al. Ranks of q-Ary 1-Perfect Codes , 2002, Des. Codes Cryptogr..
[5] de Ng Dick Bruijn. On the Factorization of Finite Abelian Groups , 1953 .
[6] L. Rédei,et al. Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós , 1965 .
[7] A. D. Sands. On the factorisation of finite abelian groups. II , 1962 .
[8] S. K. Stein. Tiling space by congruent polyhedra , 1974 .
[9] S. Szabó,et al. Factoring groups having periodic maximal subgroups , 1999 .
[10] Kevin T. Phelps,et al. Kernels and p-Kernels of pr-ary 1-Perfect Codes , 2005, Des. Codes Cryptogr..
[11] Georg Hajós,et al. Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem Würfelgitter , 1942 .
[12] P. Östergård,et al. Resolving the Existence of Full-Rank Tilings of Binary Hamming Spaces , 2005, SIAM J. Discret. Math..
[13] Bernhard Ganter,et al. Algebraic techniques for nonlinear codes , 1983, Comb..
[14] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[15] S. Szabó,et al. Factoring abelian groups and tiling binary spaces , 1997 .
[16] Ari Tra htenbergy,et al. Full-rank Tilings of F 82 Do Not Exist , 2003 .
[17] Kevin T. Phelps,et al. Kernels of nonlinear Hamming codes , 1995, Des. Codes Cryptogr..
[18] Sándor Szabó. A type of factorization of finite Abelian groups , 1985, Discret. Math..
[19] Alexander Vardy,et al. Full-Rank Tilings of $\mathbbF^8_\!2$ Do Not Exist , 2003, SIAM J. Discret. Math..
[20] T. Etzion,et al. On perfect codes and tilings: problems and solutions , 1997, Proceedings of IEEE International Symposium on Information Theory.
[21] Sándor Szabó,et al. Factoring elementary groups of prime cube order into subsets , 1998, Math. Comput..
[22] Gábor Fejes Tóth,et al. Packing and Covering , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..