A Construction of Difference Sets

AbstractIn this paper, we will give a construction of a family of $$(4q^{2n + 2} \frac{{q^{2n + 2} - 1}}{{q^2 - 1}},q^{2n + 1} [\frac{{2(q^{2n + 2} - 1)}}{{q + 1}} + 1],(q^{2n + 2} - q^{2n + 1} )\frac{{q^{2n + 1} + 1}}{{q + 1}})$$ -difference sets in thegroup $$K \times G$$ , where q is any power of 2, K is any group with $$|K| = \frac{{q^{2n + 2} - 1}}{{q^2 - 1}}$$ and G is an abelian 2-group of order $$4q^{2n + 2} $$ which contains anelementary abelian subgroup of index 2.