An overview of degradation phenomena modeling in lithium-ion battery electrodes

The formation of solid electrolyte interphase and diffusion induced microcrack in the lithium-ion battery electrodes are predominant degradation mechanisms, which cause capacity fade and cell impedance rise. Physics-based degradation models reveal new insights and allow fundamental understanding of the transport–chemistry–mechanics interactions. In addition, simulation-based diagnostics (e.g. electrochemical impedance spectroscopy, acoustic emission characteristics) can enable virtual probing and interrogation of electrode degradation behavior. This short perspective highlights the recent progress in physics-based degradation modeling and virtual diagnostics in lithium-ion battery electrodes.

[1]  Yan Wang,et al.  A first principles study of the mechanical properties of Li–Sn alloys , 2015 .

[2]  Pallab Barai,et al.  Reduced Order Modeling of Mechanical Degradation Induced Performance Decay in Lithium-Ion Battery Porous Electrodes , 2015 .

[3]  Partha P. Mukherjee,et al.  Stochastic Analysis of Diffusion Induced Damage in Lithium-Ion Battery Electrodes , 2013 .

[4]  Kandler Smith,et al.  Probing the Thermal Implications in Mechanical Degradation of Lithium-Ion Battery Electrodes , 2014 .

[5]  Chris Yuan,et al.  Multiphysics modeling of lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics , 2014 .

[6]  G. Wagner,et al.  Phase Field Modeling of Solid Electrolyte Interface Formation in Lithium Ion Batteries , 2013 .

[7]  Claudio V. Di Leo,et al.  A theory and a simulation capability for the growth of a solid electrolyte interphase layer at an anode particle in a Li-ion battery , 2015 .

[8]  M. Doyle,et al.  The Impedance Response of a Porous Electrode Composed of Intercalation Particles , 2000 .

[9]  Huajian Gao,et al.  Li segregation induces structure and strength changes at the amorphous Si/Cu interface. , 2013, Nano letters.

[10]  R. McMeeking,et al.  Modeling Crack Growth during Li Extraction in Storage Particles Using a Fracture Phase Field Approach , 2016 .

[11]  E. Kelder,et al.  Impedance Simulation of a Li-Ion Battery with Porous Electrodes and Spherical Li + Intercalation Particles , 2006 .

[12]  A. V. van Duin,et al.  Mechanical properties of amorphous LixSi alloys: a reactive force field study , 2013 .

[13]  Richard D. Braatz,et al.  Optimal Charging Profiles with Minimal Intercalation-Induced Stresses for Lithium-Ion Batteries Using Reformulated Pseudo 2-Dimensional Models , 2014 .

[14]  K. Kim,et al.  Lithium Concentration Dependent Elastic Properties of Battery Electrode Materials from First Principles Calculations , 2014 .

[15]  Xianke Lin,et al.  A Comprehensive Capacity Fade Model and Analysis for Li-Ion Batteries , 2013 .

[16]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[17]  Jing Zhang,et al.  Ab initio study of anisotropic mechanical properties of LiCoO2 during lithium intercalation and deintercalation process , 2015 .

[18]  P. Thivel,et al.  In-situ acoustic emission study of Si-based electrodes for Li-ion batteries , 2015 .

[19]  Peng Lu,et al.  Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries , 2014 .

[20]  Ting Zhu,et al.  A Phase-Field Model Coupled with Large Elasto-Plastic Deformation: Application to Lithiated Silicon Electrodes , 2014 .

[21]  T. Ohzuku,et al.  Monitoring of Particle Fracture by Acoustic Emission during Charge and Discharge of Li / MnO2 Cells , 1997 .

[22]  Bingbing Chen,et al.  Effects of dislocation mechanics on diffusion-induced stresses within a spherical insertion particle electrode , 2014 .

[23]  Gleb Yushin,et al.  High‐Capacity Anode Materials for Lithium‐Ion Batteries: Choice of Elements and Structures for Active Particles , 2014 .

[24]  S. Han,et al.  Numerical Modeling of Fracture-Resistant Sn Micropillars as Anode for Lithium Ion Batteries , 2016 .

[25]  B. Sheldon,et al.  A continuum model of deformation, transport and irreversible changes in atomic structure in amorphous lithium–silicon electrodes , 2015 .

[26]  V. Shenoy,et al.  From ab initio calculations to multiscale design of Si/C core-shell particles for Li-ion anodes. , 2014, Nano letters.

[27]  Xianke Lin,et al.  Simulation and Experiment on Solid Electrolyte Interphase (SEI) Morphology Evolution and Lithium-Ion Diffusion , 2015 .

[28]  Phl Peter Notten,et al.  Modeling the SEI-Formation on Graphite Electrodes in LiFePO4 Batteries , 2015 .

[29]  Yuanyuan Xie,et al.  Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling , 2014 .

[30]  Doron Aurbach,et al.  A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures , 1996 .

[31]  Daniel A. Steingart,et al.  Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health , 2015 .

[32]  Victor E. Brunini,et al.  A Framework for Three-Dimensional Mesoscale Modeling of Anisotropic Swelling and Mechanical Deformation in Lithium-Ion Electrodes , 2014 .

[33]  Partha P. Mukherjee,et al.  Diffusion Induced Damage and Impedance Response in Lithium-Ion Battery Electrodes , 2014 .

[34]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[35]  Balaji Krishnamurthy,et al.  A Mathematical model to study the effect of potential drop across the SEI layer on the capacity fading of a lithium ion battery , 2015 .

[36]  V. Srinivasan,et al.  Stress and Strain in Silicon Electrode Models , 2013 .

[37]  Yang-Tse Cheng,et al.  Electrode Side Reactions, Capacity Loss and Mechanical Degradation in Lithium-Ion Batteries , 2015 .

[38]  Kurt Maute,et al.  Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries , 2009 .

[39]  William H. Woodford,et al.  Electrochemical Shock in Ion-Intercalation Materials with Limited Solid-Solubility , 2013 .

[40]  Ralph E. White,et al.  Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells , 2004 .

[41]  J. Bernard,et al.  A Simplified Electrochemical and Thermal Aging Model of LiFePO4-Graphite Li-ion Batteries: Power and Capacity Fade Simulations , 2013 .

[42]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[43]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[44]  Venkat Srinivasan,et al.  Examination of Graphite Particle Cracking as a Failure Mode in Lithium-Ion Batteries: A Model-Experimental Study , 2015 .

[45]  Yang-Tse Cheng,et al.  Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress , 2010 .

[46]  W. Lu,et al.  A thermal-electrochemical model that gives spatial-dependent growth of solid electrolyte interphase in a Li-ion battery , 2014 .

[47]  Chien‐Fan Chen,et al.  Probing the morphological influence on solid electrolyte interphase and impedance response in intercalation electrodes. , 2015, Physical chemistry chemical physics : PCCP.

[48]  Dirk Uwe Sauer,et al.  Modeling mechanical degradation in lithium ion batteries during cycling: Solid electrolyte interphase fracture , 2015 .

[49]  Amartya Mukhopadhyay,et al.  Stress development due to surface processes in graphite electrodes for Li-ion batteries: A first report , 2012 .

[50]  Y. Chiang,et al.  Formulation of the coupled electrochemical–mechanical boundary-value problem, with applications to transport of multiple charged species , 2016 .

[51]  Peng Lu,et al.  Direct calculation of Li-ion transport in the solid electrolyte interphase. , 2012, Journal of the American Chemical Society.

[52]  Victor E. Brunini,et al.  Mechanical and electrochemical response of a LiCoO2 cathode using reconstructed microstructures , 2016 .

[53]  P. Novák,et al.  Graphites for lithium-ion cells : The correlation of the first-cycle charge loss with the Brunauer-Emmett-Teller surface area , 1998 .

[54]  Pallab Barai,et al.  Mechano-Electrochemical Model for Acoustic Emission Characterization in Intercalation Electrodes , 2014 .

[55]  Yan Wang,et al.  Failure Prediction of High-Capacity Electrode Materials in Lithium-Ion Batteries , 2016 .

[56]  Zhenyu Wang,et al.  Lithiation of ZnO nanowires studied by in-situ transmission electron microscopy and theoretical analysis , 2015 .

[57]  M. Verbrugge,et al.  Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles , 2010 .

[58]  Seungjun Lee,et al.  Debonding at the interface between active particles and PVDF binder in Li-ion batteries , 2016 .

[59]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[60]  H. Hng,et al.  Olivine-type nanosheets for lithium ion battery cathodes. , 2013, ACS nano.

[61]  Pallab Barai,et al.  Mechano-Electrochemical Stochastics in High-Capacity Electrodes for Energy Storage , 2016 .