Automatic Generation of Bounds for Polynomial Systems with Application to the Lorenz System

Abstract This study covers an analytical approach to calculate positive invariant sets of dynamical systems. Using Lyapunov techniques and quantifier elimination methods, an automatic procedure for determining bounds in the state space as an enclosure of attractors is proposed. The available software tools permit an algorithmizable process, which normally requires a good insight into the systems dynamics and experience. As a result we get an estimation of the attractor, whose conservatism only results from the initial choice of the Lyapunov candidate function. The proposed approach is illustrated on the well-known Lorenz system.

[1]  P. Dorato,et al.  Non-fragile controller design: an overview , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[2]  Thomas Sturm,et al.  REDLOG: computer algebra meets computer logic , 1997, SIGS.

[3]  Klaus Röbenack,et al.  Input-to-State Stability Mapping for Nonlinear Control Systems Using Quantifier Elimination , 2018, 2018 European Control Conference (ECC).

[4]  H. Nijmeijer,et al.  An ultimate bound on the trajectories of the Lorenz system and its applications , 2003 .

[5]  G. Froyland,et al.  Almost-invariant sets and invariant manifolds — Connecting probabilistic and geometric descriptions of coherent structures in flows , 2009 .

[6]  Ashish Tiwari,et al.  Verification and synthesis using real quantifier elimination , 2011, ISSAC '11.

[7]  Marek Kosta,et al.  New concepts for real quantifier elimination by virtual substitution , 2016 .

[8]  Alexander P. Krishchenko,et al.  Localization of compact invariant sets of the Lorenz system , 2006 .

[9]  Ning Zhong,et al.  Computing geometric Lorenz attractors with arbitrary precision , 2017, ArXiv.

[10]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[11]  Hirokazu Anai,et al.  An effective implementation of symbolic-numeric cylindrical algebraic decomposition for quantifier elimination , 2013, Theor. Comput. Sci..

[12]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Guanrong Chen,et al.  Estimating the bounds for the Lorenz family of chaotic systems , 2005 .

[15]  Fuchen Zhang,et al.  Further Results on Ultimate Bound on the Trajectories of the Lorenz System , 2016 .

[16]  Stefano Galatolo,et al.  An Elementary Approach to Rigorous Approximation of Invariant Measures , 2011, SIAM J. Appl. Dyn. Syst..

[17]  Hendrik Richter,et al.  Controlling the Lorenz system: combining global and local schemes , 2001 .

[18]  Noboru Sakamoto,et al.  A butterfly-shaped localization set for the Lorenz attractor , 2008 .

[19]  Pei Yu,et al.  Globally Attractive and Positive Invariant Set of the Lorenz System , 2006, Int. J. Bifurc. Chaos.

[20]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.

[21]  STEFANO GALATOLO,et al.  Rigorous computation of invariant measures and fractal dimension for maps with contracting fibers: 2D Lorenz-like maps , 2015, Ergodic Theory and Dynamical Systems.

[22]  Colin Sparrow,et al.  The Lorenz equations , 1982 .

[23]  Lu Yang,et al.  A complete discrimination system for polynomials , 1996 .

[24]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[25]  Tomás Recio,et al.  Sturm-Habicht sequence , 1989, ISSAC '89.

[26]  Mats Jirstrand,et al.  Nonlinear Control System Design by Quantifier Elimination , 1997, J. Symb. Comput..

[27]  W. Böge,et al.  Quantifier Elimination for Real Closed Fields , 1985, AAECC.

[28]  Stefano Galatolo,et al.  Statistical Properties of Lorenz-like Flows, Recent Developments and Perspectives , 2014, Int. J. Bifurc. Chaos.

[29]  V. Boichenko,et al.  Dimension theory for ordinary differential equations , 2005 .

[30]  Christopher W. Brown,et al.  Efficient Preprocessing Methods for Quantifier Elimination , 2006, CASC.

[31]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[32]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[33]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[34]  Zhikun She,et al.  A semi-algebraic approach for asymptotic stability analysis ☆ , 2009 .

[35]  Hoon Hong,et al.  Testing Stability by Quantifier Elimination , 1997, J. Symb. Comput..

[36]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition--preliminary report , 1974, SIGS.

[37]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[38]  Yasuaki Kuroe,et al.  QE Approach to Common Lyapunov Function Problem , 2003 .

[39]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[40]  Gennady A. Leonov,et al.  Attraktoreingrenzung für nichtlineare Systeme , 1987 .

[41]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .

[42]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[43]  Volker Weispfenning,et al.  Quantifier elimination for real algebra—the cubic case , 1994, ISSAC '94.