暂无分享,去创建一个
[1] P. Dorato,et al. Non-fragile controller design: an overview , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).
[2] Thomas Sturm,et al. REDLOG: computer algebra meets computer logic , 1997, SIGS.
[3] Klaus Röbenack,et al. Input-to-State Stability Mapping for Nonlinear Control Systems Using Quantifier Elimination , 2018, 2018 European Control Conference (ECC).
[4] H. Nijmeijer,et al. An ultimate bound on the trajectories of the Lorenz system and its applications , 2003 .
[5] G. Froyland,et al. Almost-invariant sets and invariant manifolds — Connecting probabilistic and geometric descriptions of coherent structures in flows , 2009 .
[6] Ashish Tiwari,et al. Verification and synthesis using real quantifier elimination , 2011, ISSAC '11.
[7] Marek Kosta,et al. New concepts for real quantifier elimination by virtual substitution , 2016 .
[8] Alexander P. Krishchenko,et al. Localization of compact invariant sets of the Lorenz system , 2006 .
[9] Ning Zhong,et al. Computing geometric Lorenz attractors with arbitrary precision , 2017, ArXiv.
[10] Rüdiger Loos,et al. Applying Linear Quantifier Elimination , 1993, Comput. J..
[11] Hirokazu Anai,et al. An effective implementation of symbolic-numeric cylindrical algebraic decomposition for quantifier elimination , 2013, Theor. Comput. Sci..
[12] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[13] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[14] Guanrong Chen,et al. Estimating the bounds for the Lorenz family of chaotic systems , 2005 .
[15] Fuchen Zhang,et al. Further Results on Ultimate Bound on the Trajectories of the Lorenz System , 2016 .
[16] Stefano Galatolo,et al. An Elementary Approach to Rigorous Approximation of Invariant Measures , 2011, SIAM J. Appl. Dyn. Syst..
[17] Hendrik Richter,et al. Controlling the Lorenz system: combining global and local schemes , 2001 .
[18] Noboru Sakamoto,et al. A butterfly-shaped localization set for the Lorenz attractor , 2008 .
[19] Pei Yu,et al. Globally Attractive and Positive Invariant Set of the Lorenz System , 2006, Int. J. Bifurc. Chaos.
[20] Volker Weispfenning,et al. The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.
[21] STEFANO GALATOLO,et al. Rigorous computation of invariant measures and fractal dimension for maps with contracting fibers: 2D Lorenz-like maps , 2015, Ergodic Theory and Dynamical Systems.
[22] Colin Sparrow,et al. The Lorenz equations , 1982 .
[23] Lu Yang,et al. A complete discrimination system for polynomials , 1996 .
[24] James H. Davenport,et al. Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..
[25] Tomás Recio,et al. Sturm-Habicht sequence , 1989, ISSAC '89.
[26] Mats Jirstrand,et al. Nonlinear Control System Design by Quantifier Elimination , 1997, J. Symb. Comput..
[27] W. Böge,et al. Quantifier Elimination for Real Closed Fields , 1985, AAECC.
[28] Stefano Galatolo,et al. Statistical Properties of Lorenz-like Flows, Recent Developments and Perspectives , 2014, Int. J. Bifurc. Chaos.
[29] V. Boichenko,et al. Dimension theory for ordinary differential equations , 2005 .
[30] Christopher W. Brown,et al. Efficient Preprocessing Methods for Quantifier Elimination , 2006, CASC.
[31] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[32] George E. Collins,et al. Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..
[33] Christopher W. Brown. QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.
[34] Zhikun She,et al. A semi-algebraic approach for asymptotic stability analysis ☆ , 2009 .
[35] Hoon Hong,et al. Testing Stability by Quantifier Elimination , 1997, J. Symb. Comput..
[36] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition--preliminary report , 1974, SIGS.
[37] A. Seidenberg. A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .
[38] Yasuaki Kuroe,et al. QE Approach to Common Lyapunov Function Problem , 2003 .
[39] B. F. Caviness,et al. Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.
[40] Gennady A. Leonov,et al. Attraktoreingrenzung für nichtlineare Systeme , 1987 .
[41] G. Leonov,et al. Attraktorlokalisierung des Lorenz-Systems , 1987 .
[42] S. Basu,et al. Algorithms in real algebraic geometry , 2003 .
[43] Volker Weispfenning,et al. Quantifier elimination for real algebra—the cubic case , 1994, ISSAC '94.