Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting

Photoelectrochemical cells based on traditional and nanostructured ZnO thin films are investigated for hydrogen generation from water splitting. The ZnO thin films are fabricated using three different deposition geometries: normal pulsed laser deposition, pulsed laser oblique-angle deposition, and electron-beam glancing-angle deposition. The nanostructured films are characterized by scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and photoelectrochemical techniques. Normal pulsed laser deposition produces dense thin films with ca. 200 nm grain sizes, while oblique-angle deposition produces nanoplatelets with a fishscale morphology and individual features measuring ca. 900 by 450 nm on average. In contrast, glancing-angle deposition generates a highly porous, interconnected network of spherical nanoparticles of 15–40 nm diameter. Mott-Schottky plots show the flat band potential of pulsed laser deposition, oblique-angle deposition, and glancing-angle deposition samples to be −0.29, −0.28 and +0.20 V, respectively. Generation of photocurrent is observed at anodic potentials and no limiting photocurrents were observed with applied potentials up to 1.3 V for all photoelectrochemical cells. The effective photon-to-hydrogen efficiency is found to be 0.1%, 0.2% and 0.6% for pulsed laser deposition, oblique-angle deposition and glancing-angle deposition samples, respectively. The photoelectrochemical properties of the three types of films are understood to be a function of porosity, crystal defect concentration, charge transport properties and space charge layer characteristics.

[1]  Karin Fink,et al.  Zinc Oxide Nanoparticles with Defects , 2005 .

[2]  J. Musil,et al.  Low-temperature sputtering of crystalline TiO2 films , 2006 .

[3]  Wei Chen,et al.  Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol). , 2006, The journal of physical chemistry. B.

[4]  M. Brett,et al.  Birefringence enhancement in annealed TiO2 thin films , 2007 .

[5]  M. Swaminathan,et al.  Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53 , 2007 .

[6]  Juan Bisquert,et al.  Mott-Schottky Analysis of Nanoporous Semiconductor Electrodes in Dielectric State Deposited on SnO2 ( F ) Conducting Substrates , 2003 .

[7]  C. Grimes,et al.  P-type Cu--Ti--O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. , 2008, Nano letters.

[8]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[9]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[10]  M. Brett,et al.  Optical properties of porous helical thin films. , 2004, Applied optics.

[11]  Kazuhiko Yazawa,et al.  Photoelectrolysis of water with TiO2‐covered solar‐cell electrodes , 1976 .

[12]  C. Grimes,et al.  An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties , 2006 .

[13]  Anders Hagfeldt,et al.  Nanostructured ZnO electrodes for photovoltaic applications , 1999 .

[14]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[15]  Daniel T. Schwartz,et al.  Electrodeposited Nanocomposite n–p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics , 2000 .

[16]  Z. Wen,et al.  Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO2 Films for Solar Energy Conversion Applications , 2008 .

[17]  Michael J. Brett,et al.  Effects of annealing on titanium dioxide structured films , 2004 .

[18]  Wilson A. Smith,et al.  Structural and optical characterization of WO3 nanorods/films prepared by oblique angle deposition , 2007 .

[19]  Frank Lenzmann,et al.  A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25−TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics , 2002 .

[20]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[21]  Georg Kresse,et al.  Defect energetics in ZnO: A hybrid Hartree-Fock density functional study , 2008 .

[22]  W. Schottky,et al.  Vereinfachte und erweiterte Theorie der Randschicht-gleichrichter , 1942 .

[23]  Jianjun He,et al.  Photoelectrochemistry of Nanostructured WO3 Thin Film Electrodes for Water Oxidation: Mechanism of Electron Transport , 2000 .

[24]  Yiping Zhao,et al.  The Use of Aligned Silver Nanorod Arrays Prepared by Oblique Angle Deposition as Surface Enhanced Raman Scattering Substrates , 2008 .

[25]  J. Turner,et al.  Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films , 2008 .

[26]  J. Macák,et al.  Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes , 2005 .

[27]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[28]  Toh-Ming Lu,et al.  Novel Nano-Column and Nano-Flower Arrays by Glancing Angle Deposition , 2002 .

[29]  Motofumi Suzuki,et al.  Photocatalysis of sculptured thin films of TiO2 , 2001 .

[30]  D. K. Wong,et al.  Fabrication and Impedance Analysis of n‐ZnO Nanorod/p‐Si Heterojunctions to Investigate Carrier Concentrations in Zn/O Source‐ Ratio‐Tuned ZnO Nanorod Arrays , 2007 .

[31]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[32]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[33]  Allen J. Bard,et al.  Unassisted water splitting from bipolar Pt/dye-sensitized TiO 2 photoelectrode arrays , 2005 .

[34]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[35]  G. Exarhos,et al.  Mott–Schottky analysis of thin ZnO films , 2000 .

[36]  Yang Zhang,et al.  Multilayered Si/Ni nanosprings and their magnetic properties. , 2007, Small.

[37]  Krishnan Rajeshwar,et al.  Hydrogen generation at irradiated oxide semiconductor–solution interfaces , 2007 .

[38]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[39]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[40]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[41]  Todd G. Deutsch,et al.  Photoelectrochemical Properties of N-Incorporated ZnO Films Deposited by Reactive RF Magnetron Sputtering , 2007 .

[42]  Wolfgang W. Gärtner,et al.  Depletion-Layer Photoeffects in Semiconductors , 1959 .

[43]  Wilson A. Smith,et al.  Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. , 2009, Small.

[44]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[45]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .