Generalized spectral decomposition and intrinsic irreversibility of the Arnold Cat Map

Abstract We construct a generalized spectral decomposition of the Frobenius-Perron and Koopman operators of the Arnold Cat map. We define a suitable dual pair or rigged Hubert space which provides mathematical meaning to the spectral decomposition. The eigenvalues in the decomposition are the resonances of the power spectrum which determine the decay rates of the correlation functions and the rate of approach to equilibrium. The extended unitary evolution splits into two distinct semigroups which express the intrinsic irreversibility of the Cat map resulting from the strong chaotic properties.

[1]  I. Antoniou,et al.  Spectral decomposition of the tent maps and the isomorphism of dynamical systems , 1996 .

[2]  Ioannis Antoniou,et al.  Generalized spectral decomposition of the β-adic baker's transformation and intrinsic irreversibility , 1992 .

[3]  H. Hasegawa,et al.  Transport as a dynamical property of a simple map , 1992 .

[4]  Mark Pollicott,et al.  On the rate of mixing of Axiom A flows , 1985 .

[5]  Ioannis Antoniou,et al.  Spectral decomposition of the Renyi map , 1993 .

[6]  Ioannis Antoniou,et al.  Deterministic diffusion, De Rham equation and fractal eigenvectors , 1993 .

[7]  Nicolis,et al.  Generalized Markov coarse graining and spectral decompositions of chaotic piecewise linear maps. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  D. Ruelle,et al.  Resonances of chaotic dynamical systems. , 1986, Physical review letters.

[9]  Jordan blocks in a one-dimensional Markov map , 1997 .

[10]  I. Antoniou,et al.  Resonances of dynamical systems and Fredholm-Riesz operators on rigged Hilbert spaces☆ , 1997 .

[11]  David Ruelle,et al.  An extension of the theory of Fredholm determinants , 1990 .

[12]  M. Dörfle Spectrum and eigenfunctions of the Frobenius-Perron operator of the tent map , 1985 .

[13]  Hazime Mori,et al.  Time-Correlation Functions of One-Dimensional Transformations , 1981 .

[14]  P. Gaspard r-adic one-dimensional maps and the Euler summation formula , 1992 .

[15]  I. Antoniou,et al.  Spectral decomposition and fractal eigenvectors for a class of piecewise linear maps , 1994 .

[16]  USING SYMMETRIES OF THE FROBENIUS-PERRON OPERATOR TO DETERMINE SPECTRAL DECOMPOSITIONS , 1996 .

[17]  M. Pollicott Meromorphic extensions of generalised zeta functions , 1986 .

[18]  Ergodic properties of piecewise linear maps on fractal repellers , 1993 .

[19]  I. Antoniou,et al.  Generalized spectral decompositions of mixing dynamical systems , 1993 .

[20]  Ioannis Antoniou,et al.  Intrinsic irreversibility and integrability of dynamics , 1993 .