On the sensitivity of additive cellular automata in Besicovitch topologies

We prove that additive cellular automata in the Besicovitch topology that have a Willson limit set of Hausdorff dimension strictly bigger than 1 are sensitive to initial conditions.

[1]  Stephen J. Willson,et al.  Growth rates and fractional dimensions in cellular automata , 1984 .

[2]  Y. Pesin DIMENSION THEORY IN DYNAMICAL SYSTEMS: CONTEMPORARY VIEWS AND APPLICATIONS By YAKOV B. PESIN Chicago Lectures in Mathematics, University of Chicago Press, 312 pp. Price: hardback $56, paperback $19.95. ISBN 0 226 66222 5 , 1998, Ergodic Theory and Dynamical Systems.

[3]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[4]  Stephen J. Willson The equality of fractional dimensions for certain cellular automata , 1987 .

[5]  P. Kurka Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.

[6]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[7]  Petr Kurka,et al.  Cellular Automata in the Cantor, Besicovitch, and Weyl Topological Spaces , 1997, Complex Syst..

[8]  Nobuyasu Osato,et al.  Linear Cellular Automata over Z_m , 1983, J. Comput. Syst. Sci..

[9]  Heinz-Otto Peitgen,et al.  Linear Cellular Automata, Substitutions, Hierarchical Iterated Function Systems and Attractors , 1992 .

[10]  Y. Pesin,et al.  Dimension theory in dynamical systems , 1997 .

[11]  Satoshi Takahashi,et al.  Self-Similarity of Linear Cellular Automata , 1992, J. Comput. Syst. Sci..

[12]  Heinz-Otto Peitgen,et al.  Global analysis of self-similarity features of cellular automata: selected examples , 1995 .

[13]  Stephen J. Willson Computing fractal dimensions for additive cellular automata , 1987 .

[14]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .