Serendipity Strikes: How Pursuing Novel Hypotheses Shifted the Paradigm Regarding the Genetic Basis of Colorectal Cancer and Changed Cancer Therapy

[1]  J. Taube,et al.  Phase I Study of Single-Agent Anti–Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates , 2023, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  M. Gonen,et al.  PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. , 2022, The New England journal of medicine.

[3]  A. Korman,et al.  The foundations of immune checkpoint blockade and the ipilimumab approval decennial , 2021, Nature Reviews Drug Discovery.

[4]  Sean V Tavtigian,et al.  Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine , 2019, The Journal of pathology.

[5]  Ludmila V. Danilova,et al.  Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade , 2017, Science.

[6]  B. Vogelstein,et al.  PD-1 blockade in tumors with mismatch repair deficiency. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[8]  C. Boland,et al.  The History of Lynch Syndrome , 2013, Familial Cancer.

[9]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[10]  David C. Smith,et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. , 2012, The New England journal of medicine.

[11]  Axel Benner,et al.  Prevalence of mismatch repair-deficient crypt foci in Lynch syndrome: a pathological study. , 2012, The Lancet. Oncology.

[12]  Matej Horvat,et al.  Microsatellite instability in colorectal cancer , 2011, Radiology and oncology.

[13]  M. Kloor,et al.  Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes , 2010, International journal of cancer.

[14]  Israel Lowy,et al.  Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  M. Kloor,et al.  Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. , 2008, Gastroenterology.

[16]  C. Behling,et al.  Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. , 2004, Gastroenterology.

[17]  S. Bull,et al.  Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. , 2000, The New England journal of medicine.

[18]  C. Boland,et al.  Mismatch repair proficiency and in vitro response to 5-fluorouracil. , 1999, Gastroenterology.

[19]  M. Hawn,et al.  Competency in mismatch repair prohibits clonal expansion of cancer cells treated with N-methyl-N'-nitro-N-nitrosoguanidine. , 1996, The Journal of clinical investigation.

[20]  M. Hawn,et al.  Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint. , 1995, Cancer research.

[21]  Sajeev P. Cherian,et al.  Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N'-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. , 1994, Cancer research.

[22]  R. Fleischmann,et al.  Mutation of a mutL homolog in hereditary colon cancer. , 1994, Science.

[23]  D. Ward,et al.  Mutation in the DNA mismatch repair gene homologue hMLH 1 is associated with hereditary non-polyposis colon cancer , 1994, Nature.

[24]  Bert Vogelstein,et al.  Hypermutability and mismatch repair deficiency in RER+ tumor cells , 1993, Cell.

[25]  Robin J. Leach,et al.  Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer , 1993, Cell.

[26]  N. Copeland,et al.  The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer , 1993, Cell.

[27]  A. Lindblom,et al.  Genetic mapping of a second locus predisposing to hereditary non–polyposis colon cancer , 1993, Nature Genetics.

[28]  Darryl Shibata,et al.  Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis , 1993, Nature.

[29]  K. Kinzler,et al.  Clues to the pathogenesis of familial colorectal cancer. , 1993, Science.

[30]  J. Weber,et al.  Genetic mapping of a locus predisposing to human colorectal cancer. , 1993, Science.

[31]  S N Thibodeau,et al.  Microsatellite instability in cancer of the proximal colon. , 1993, Science.

[32]  S. Altschul,et al.  Identification of FAP locus genes from chromosome 5q21. , 1991, Science.

[33]  J. McPherson,et al.  Identification of deletion mutations and three new genes at the familial polyposis locus , 1991, Cell.

[34]  Margaret Robertson,et al.  Identification and characterization of the familial adenomatous polyposis coli gene , 1991, Cell.

[35]  K. Kinzler,et al.  Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. , 1991, Science.

[36]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[37]  Y. Nakamura,et al.  Allelotype of colorectal carcinomas. , 1989, Science.

[38]  Y. Nakamura,et al.  Genetic alterations during colorectal-tumor development. , 1988, The New England journal of medicine.

[39]  Y. Nakamura,et al.  The gene for familial polyposis coli maps to the long arm of chromosome 5. , 1987, Science.

[40]  B. Vogelstein,et al.  Clonal analysis of human colorectal tumors. , 1987, Science.

[41]  F. C. Lucibello,et al.  Localization of the gene for familial adenomatous polyposis on chromosome 5 , 1987, Nature.

[42]  A. Sandberg,et al.  Gardner syndrome in a man with an interstitial deletion of 5q. , 1986, American journal of medical genetics.

[43]  B. Levin,et al.  Chromosomal banding patterns in human large bowel cancer , 1981, International journal of cancer.

[44]  A. S. Warthin HEREDITY WITH REFERENCE TO CARCINOMA: AS SHOWN BY THE STUDY OF THE CASES EXAMINED IN THE PATHOLOGICAL LABORATORY OF THE UNIVERSITY OF MICHIGAN, 1895-1913 , 1913 .

[45]  Ho Lam Chan,et al.  Immune checkpoint inhibitors: basics and challenges. , 2019, Current medicinal chemistry.

[46]  S. Bülow,et al.  The history of familial adenomatous polyposis , 2005, Familial Cancer.

[47]  A. Feinberg,et al.  Microallelotyping defines the sequence and tempo of alleiic losses at tumour suppressor gene loci during colorectal cancer progression , 1995, Nature Medicine.

[48]  William E. Grizzle,et al.  Detection of high incidence of K-ras oncogenes during human colon tumorigenesis , 1987, Nature.

[49]  B. Vogelstein,et al.  Prevalence of ras gene mutations in human colorectal cancers , 1987, Nature.

[50]  B. Dutrillaux,et al.  Consistent deficiencies of chromosome 18 and of the short arm of chromosome 17 in eleven cases of human large bowel cancer: a possible recessive determinism. , 1985, Annales de genetique.