Relative multiplexing for minimising switching in linear-optical quantum computing

Many existing schemes for linear-optical quantum computing (LOQC) depend on multiplexing (MUX), which uses dynamic routing to enable near-deterministic gates and sources to be constructed using heralded, probabilistic primitives. MUXing accounts for the overwhelming majority of active switching demands in current LOQC architectures. In this manuscript we introduce relative multiplexing (RMUX), a general-purpose optimisation which can dramatically reduce the active switching requirements for MUX in LOQC, and thereby reduce hardware complexity and energy consumption, as well as relaxing demands on performance for various photonic components. We discuss the application of RMUX to the generation of entangled states from probabilistic single-photon sources, and argue that an order of magnitude improvement in the rate of generation of Bell states can be achieved. In addition, we apply RMUX to the proposal for percolation of a 3D cluster state by Gimeno-Segovia et al (2015 Phys. Rev. Lett. 115 020502), and we find that RMUX allows an 2.4× increase in loss tolerance for this architecture.

[1]  C. Silberhorn,et al.  Limits on the deterministic creation of pure single-photon states using parametric down-conversion , 2011, 1111.4095.

[2]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[3]  Fumihiro Kaneda,et al.  Time-multiplexed heralded single-photon source , 2015, 1507.06052.

[4]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[5]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[6]  J. O'Brien,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2015, Nature Communications.

[7]  Miguel A. Larotonda,et al.  Multiplexing photons with a binary division strategy , 2014 .

[8]  P. Kwiat,et al.  Efficient optical quantum state engineering. , 2009, Physical review letters.

[9]  Damien Bonneau,et al.  Effect of loss on multiplexed single-photon sources , 2014, 1409.5341.

[10]  Jian-Wei Pan,et al.  Demonstration of a scheme for the generation of ``event-ready'' entangled photon pairs from a single-photon source , 2008 .

[11]  J Eisert,et al.  Percolation, renormalization, and quantum computing with nondeterministic gates. , 2007, Physical review letters.

[12]  E. Jeffrey,et al.  Towards a periodic deterministic source of arbitrary single-photon states , 2004 .

[13]  Mercedes Gimeno-Segovia,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[14]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[15]  T. Rudolph,et al.  How good must single photon sources and detectors be for efficient linear optical quantum computation? , 2007, Physical review letters.

[16]  Jeffrey H Shapiro,et al.  On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls. , 2007, Optics letters.

[17]  W. Grice Arbitrarily complete Bell-state measurement using only linear optical elements , 2011 .

[18]  Johannes Kofler,et al.  Experimental generation of single photons via active multiplexing , 2010, 1007.4798.

[19]  Ying Li,et al.  Resource costs for fault-tolerant linear optical quantum computing , 2015, 1504.02457.

[20]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[21]  Dirk Englund,et al.  Efficient generation of single and entangled photons on a silicon photonic integrated chip , 2011 .

[22]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[23]  M P Almeida,et al.  Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing. , 2011, Optics express.

[24]  Z. Sheng,et al.  A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology , 2012, IEEE Photonics Journal.

[25]  Marco Barbieri,et al.  Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis , 2010, 1012.1868.

[26]  Philip Walther,et al.  Heralded generation of entangled photon pairs , 2010, 1007.2745.

[27]  Kevin McCusker,et al.  Low-loss all-optical quantum switching , 2013, 2013 IEEE Photonics Society Summer Topical Meeting Series.

[28]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[29]  Alan L. Migdall,et al.  Deterministic generation of single photons via multiplexing repetitive parametric downconversions , 2013 .

[30]  Benjamin J. Eggleton,et al.  Hybrid photonic circuit for multiplexed heralded single photons , 2014, 1402.7202.

[31]  Paolo Villoresi,et al.  Asymmetric architecture for heralded single-photon sources , 2012, 1210.6878.

[32]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[33]  Jeremy L O'Brien,et al.  Active temporal and spatial multiplexing of photons , 2016 .

[34]  Peter van Loock,et al.  3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae. , 2014, Physical review letters.

[35]  Ray T. Chen,et al.  Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers. , 2013, Optics letters.

[36]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[37]  Philip H. W. Leong,et al.  Active temporal multiplexing of indistinguishable heralded single photons , 2015, Nature Communications.

[38]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[39]  T.D. Vo,et al.  Integrated spatial multiplexing of heralded single-photon sources , 2013, Nature communications.

[40]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[41]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[42]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[43]  N. Harris,et al.  Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems , 2014, 1409.8215.