Comparing Adherence to Two Different HIV Antiretroviral Regimens: An Instrumental Variable Analysis

The objective of this observational cohort study was to compare adherence to protease inhibitor (PI)-based regimens or non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimens. HIV-seropositive, antiretroviral-naïve patients initiating therapy between 1998 and 2006 were identified using Veterans Health Administration databases. First-year adherence ratios were calculated as proportion of days covered (PDC). Multivariable regressions were run with an indicator for PDC >95, 90, 85, and 80 % as the dependent variable and an indicator for a PI-based regimen as the key independent variable. We controlled for residual unmeasured confounding by indication using an instrumental variable technique, using the physician’s prescribing preference as the instrument. Out of 929 veterans on PI-based and 747 on NNRTI-based regimens, only 19.7 % of PI patients had PDC >80 %, compared to 35.1 % of NNRTI patients. In multivariable analysis, starting a PI regimen was significantly associated with poor adherence for all 4 adherence thresholds using conventional regressions and instrumental variable methods.ResumenEL objetivo de este estudio de cohorte observacional fue comparar la adherencia a regímenes basados en inhibidores de la proteasa (PI) o inhibidores no nucleótidos de la transcriptasa reversa (NNRTI). Pacientes que nunca habían recibido antiretrovirales, eran seropositivos para VIH e iniciaron tratamiento entre 1998–2006 fueron identificados usando bases de datos de la Veteran Health Administration (Administración de Salud de los Veteranos). Las razones de adherencia para el primer ano fueron calculadas como proporciones de días cubiertos (PDC). Se hicieron Regresiones multivariadas con un indicador para PDC >95, >90, >85, y 80 % como variable dependiente y un indicador para un régimen basado en PI como variable independiente principal. Controlamos para factores de confusión por indicación usando una técnica de variable instrumental, tomando las preferencias de prescripción del medico como instrumento. De 929 veteranos en un régimen con PI y 747 en regímenes basados en NNRTI, solo 19.7 % de los pacientes en inhibidores de la proteasa tuvieron PDC >80 %, comparado con 35.1 % de los pacientes en NNRTI. En una análisis multivariado el comenzar con un régimen de PI, se asocio significativamente con pobre adherencia en los 4 umbrales de adherencia usando métodos de regresión convencional y métodos de variable instrumental.

[1]  F. Maggiolo,et al.  Similar adherence rates favor different virologic outcomes for patients treated with nonnucleoside analogues or protease inhibitors. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[2]  J. Miro,et al.  A randomized trial comparing the efficacy and tolerability of two HAART strategies at two years in antiretroviral naive patients. , 2007, Revista clinica espanola.

[3]  Richard D Moore,et al.  A ten-year analysis of the incidence and risk factors for acute pancreatitis requiring hospitalization in an urban HIV clinical cohort. , 2008, AIDS patient care and STDs.

[4]  Sebastian Schneeweiss,et al.  Preference-Based Instrumental Variable Methods for the Estimation of Treatment Effects: Assessing Validity and Interpreting Results , 2007, The international journal of biostatistics.

[5]  J. Aikens,et al.  Patient-reported perceptions of side effects of antihyperglycemic medication and adherence to medication regimens in persons with diabetes mellitus. , 2007, Clinical therapeutics.

[6]  B. Walker,et al.  Tolerability and Efficacy of PI Versus NNRTI-Based Regimens in Subjects Receiving HAART During Acute or Early HIV Infection , 2009, Journal of acquired immune deficiency syndromes.

[7]  A. Monforte,et al.  Predictive factors of lopinavir/ritonavir discontinuation for drug-related toxicity: results from a cohort of 416 multi-experienced HIV-infected individuals. , 2005, International journal of antimicrobial agents.

[8]  M Alan Brookhart,et al.  Instrumental variables II: instrumental variable application-in 25 variations, the physician prescribing preference generally was strong and reduced covariate imbalance. , 2009, Journal of clinical epidemiology.

[9]  M Alan Brookhart,et al.  American Journal of Epidemiology Practice of Epidemiology Instrumental Variable Analysis for Estimation of Treatment Effects with Dichotomous Outcomes , 2022 .

[10]  V. Vullo,et al.  Time to discontinuation of the first highly active antiretroviral therapy regimen: a comparison between protease inhibitor- and non-nucleoside reverse transcriptase inhibitor-containing regimens. , 2001, AIDS.

[11]  J. J. Henning,et al.  Guidelines for the Use of Antiretroviral Agents in HIV-Infected Adults and Adolescents, January 28, 2000 , 1998, HIV clinical trials.

[12]  M Alan Brookhart,et al.  Evaluating Short-Term Drug Effects Using a Physician-Specific Prescribing Preference as an Instrumental Variable , 2006, Epidemiology.

[13]  C. Hicks,et al.  Protease inhibitor-based antiretroviral therapy in treatment-naive HIV-1-infected patients: the evidence behind the options. , 2010, The Journal of antimicrobial chemotherapy.

[14]  C. Cooper,et al.  Association between bisphosphonate use and implant survival after primary total arthroplasty of the knee or hip: population based retrospective cohort study , 2011 .

[15]  T. Mark,et al.  Antidepressant use in geriatric populations: the burden of side effects and interactions and their impact on adherence and costs. , 2011, The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry.

[16]  Spyridon S Marinopoulos,et al.  The Charlson comorbidity index is adapted to predict costs of chronic disease in primary care patients. , 2008, Journal of clinical epidemiology.

[17]  M Alan Brookhart,et al.  Instrumental Variable Analysis of Secondary Pharmacoepidemiologic Data , 2006, Epidemiology.

[18]  Sebastian Schneeweiss,et al.  A Medicare database review found that physician preferences increasingly outweighed patient characteristics as determinants of first-time prescriptions for COX-2 inhibitors. , 2005, Journal of clinical epidemiology.

[19]  C. Larsen,et al.  Inpatient admissions and outpatient visits in persons with and without HIV infection in Denmark, 1995–2007 , 2010, AIDS.

[20]  Jonathan H. Wright,et al.  A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments , 2002 .

[21]  M. González Sagrado,et al.  Assessment of factors influencing health‐related quality of life in HIV‐infected patients , 2011, HIV medicine.

[22]  M Alan Brookhart,et al.  Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships. , 2009, Journal of clinical epidemiology.

[23]  J. Rassen,et al.  Evaluating the Validity of an Instrumental Variable Study of Neuroleptics: Can Between-Physician Differences in Prescribing Patterns Be Used to Estimate Treatment Effects? , 2007, Medical care.

[24]  M. Kozal,et al.  Adherence, virological and immunological outcomes for HIV-infected veterans starting combination antiretroviral therapies , 2007, AIDS.

[25]  G. Borsboom,et al.  The role of 'confounding by indication' in assessing the effect of quality of care on disease outcomes in general practice: results of a case-control study , 2005, BMC health services research.

[26]  K. Tashima,et al.  Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. , 1999, The New England journal of medicine.

[27]  F. Noya,et al.  Clinical effectiveness of inhaled corticosteroids versus montelukast in children with asthma: prescription patterns and patient adherence as key factors , 2012, Current medical research and opinion.

[28]  M. Beauchesne,et al.  Inhaled corticosteroids vs. leukotriene-receptor antagonists and asthma exacerbations in children. , 2011, Respiratory medicine.

[29]  M J Gill,et al.  Cost of medical care for HIV‐infected patients within a regional population from 1997 to 2006 , 2008, HIV medicine.

[30]  D. G. Saple,et al.  Physician estimate of antiretroviral adherence in India: poor correlation with patient self-report and viral load. , 2010, AIDS patient care and STDs.

[31]  F. Maggiolo,et al.  Effect of Adherence to HAART on Virologic Outcome and on the Selection of Resistance-Conferring Mutations in NNRTI- or PI-Treated Patients , 2007, HIV clinical trials.

[32]  J. Avorn,et al.  Determinants of selective cyclooxygenase-2 inhibitor prescribing: are patient or physician characteristics more important? , 2003, The American journal of medicine.

[33]  S. Staszewski Update on study 006--EFV + AZT + 3TC versus the current 'standard of care' IDV + AZT + 3TC. , 1999, International journal of clinical practice. Supplement.

[34]  J. Angrist,et al.  Identification and Estimation of Local Average Treatment Effects , 1995 .

[35]  C. McAdam-Marx,et al.  Comparing Medication Adherence Methods in Lipid-Modifying Therapy , 2012 .

[36]  M. Moroni,et al.  Insights into the reasons for discontinuation of the first highly active antiretroviral therapy (HAART) regimen in a cohort of antiretroviral naïve patients , 2000, AIDS.

[37]  Richard D Moore,et al.  Inpatient Health Services Utilization Among HIV-Infected Adult Patients in Care 2002–2007 , 2010, Journal of acquired immune deficiency syndromes.

[38]  M. Chesney,et al.  Patient- and provider-reported adherence: toward a clinically useful approach to measuring antiretroviral adherence. , 2001, Journal of clinical epidemiology.

[39]  K. Ruxrungtham,et al.  Efficacy and tolerability of a double boosted protease inhibitor (lopinavir + saquinavir/ritonavir) regimen in HIV‐infected patients who failed treatment with nonnucleoside reverse transcriptase inhibitors , 2007, HIV medicine.

[40]  F. Brun-Vézinet,et al.  Adherence to Antiretroviral Therapy and Outcomes in HIV-Infected Patients Enrolled in An Induction/Maintenance Randomized Trial , 2001, Antiviral therapy.

[41]  C. Savini,et al.  Survey of patient and clinician attitudes on adherence in a rural HIV clinic. , 2003, The Journal of the Association of Nurses in AIDS Care : JANAC.

[42]  K. Mazor,et al.  Predictors of very low adherence with medications for osteoporosis: towards development of a clinical prediction rule , 2010, Osteoporosis International.

[43]  O. Kirk,et al.  Resistance profiles and adherence at primary virological failure in three different highly active antiretroviral therapy regimens: analysis of failure rates in a randomized study , 2004, HIV medicine.

[44]  V. Johnson,et al.  Consequences and Determinants of Adherence to Antiretroviral Medication: Results from Adult Aids Clinical Trials Group Protocol 370 , 2001, Antiviral therapy.

[45]  Yingying Ma,et al.  How well do clinicians estimate patients’ adherence to combination antiretroviral therapy? , 2007, Journal of General Internal Medicine.

[46]  J. Miro,et al.  Relationship between adherence level, type of the antiretroviral regimen, and plasma HIV type 1 RNA viral load: a prospective cohort study. , 2008, AIDS Research and Human Retroviruses.

[47]  J. Cramer,et al.  Methods for integrating medication compliance and persistence in pharmacoeconomic evaluations. , 2007, Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research.

[48]  Steven M. Shechter,et al.  Explaining variability in the relationship between antiretroviral adherence and HIV mutation accumulation. , 2006, The Journal of antimicrobial chemotherapy.

[49]  C. Mackenzie,et al.  A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. , 1987, Journal of chronic diseases.

[50]  R. Hamatake,et al.  Clinical Utility of Current NNRTIs and Perspectives of New Agents in This Class under Development , 2004, Antiviral chemistry & chemotherapy.