Semidirect products and reduction in mechanics

This paper shows how to reduce a Hamiltonian system on the cotangent bundle of a Lie group to a Hamiltonian system in the dual of the Lie algebra of a semidirect product. The procedure simplifies, unifies, and extends work of Greene, Guillemin, Holm, Holmes, Kupershmidt, Marsden, Morrison, Ratiu, Sternberg and others. The heavy top, compressible fluids, magnetohydrodynamics, elasticity, the Maxwell-Vlasov equations and multifluid plasmas are presented as examples. Starting with Lagrangian variables, our method explains in a direct way why semidirect products occur so frequently in examples. It also provides a framework for the systematic introduction of Clebsch, or canonical, variables

[1]  S. Lie Theorie der Transformationsgruppen I , 1880 .

[2]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[3]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[4]  Francis P. Bretherton,et al.  A note on Hamilton's principle for perfect fluids , 1970, Journal of Fluid Mechanics.

[5]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[6]  J. Rawnsley Representations of a semi-direct product by quantization , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Well-posedness of the equations of a non-homogeneous perfect fluid , 1976 .

[8]  B. Kupershmidt,et al.  THE STRUCTURES OF HAMILTONIAN MECHANICS , 1977 .

[9]  S. Sternberg Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Jerrold E. Marsden,et al.  Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity , 1977 .

[11]  Shlomo Sternberg,et al.  Hamiltonian group actions and dynamical systems of calogero type , 1978 .

[12]  A. Weinstein A universal phase space for particles in Yang-Mills fields , 1978 .

[13]  P. Morrison,et al.  Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. , 1980 .

[14]  I. Dzyaloshinskiǐ,et al.  Poisson brackets in condensed matter physics , 1980 .

[15]  S. Sternberg,et al.  The moment map and collective motion , 1980 .

[16]  T Ratiu Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Jerrold E. Marsden,et al.  Horseshoes and Arnold Diffusion for Hamiltonian Systems on Lie Groups , 1981 .

[18]  Tudor S. Ratiu,et al.  Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body , 1981 .

[19]  Jerrold E. Marsden,et al.  The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .

[20]  The Hamiltonian structure of multi‐species fluid electrodynamics , 1982 .

[21]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[22]  Philip J. Morrison,et al.  Poisson brackets for fluids and plasmas , 1982 .

[23]  A. Weinstein Local structure of Poisson manifolds , 2021, Lectures on Poisson Geometry.

[24]  Darryl D. Holm,et al.  Poisson brackets and clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity , 1983 .

[25]  J. Marsden,et al.  Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids , 1983 .

[26]  Jerrold E. Marsden,et al.  Hamiltonian systems with symmetry, coadjoint orbits and plasma physics , 1983 .