Bioconductor: open software development for computational biology and bioinformatics

The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples.

[1]  Maude Moore,et al.  Boost , 1925 .

[2]  Guy L. Steele,et al.  Common Lisp the Language , 1984 .

[3]  Eric Shepherd,et al.  A pocket reference , 1994 .

[4]  David L. Donoho,et al.  WaveLab and Reproducible Research , 1995 .

[5]  Chris Exton,et al.  Distributed component object model (DCOM) , 1997 .

[6]  C. M. Sperberg-McQueen,et al.  Extensible Markup Language (XML) , 1997, World Wide Web J..

[7]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[8]  J. Chambers Programming with Data: A Guide to the S Language , 1998 .

[9]  Linus Torvalds,et al.  The Linux edge , 1999, CACM.

[10]  Douglas M. Bates,et al.  Programming With Data: A Guide to the S Language , 1999, Technometrics.

[11]  Matthias Schwab,et al.  Making scientific computations reproducible , 2000, Comput. Sci. Eng..

[12]  P. Salus The Cathedral and the Bazaar , 2000 .

[13]  Gregor N. Purdy CVS Pocket Reference , 2000 .

[14]  D. Box,et al.  Simple object access protocol (SOAP) 1.1 , 2000 .

[15]  George N. Dafermos,et al.  Management and Virtual Decentralised Networks: The Linux Project , 2001, First Monday.

[16]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Friedrich Leisch,et al.  Editorial Porting R to Darwin/x11 and Mac Os X Mac Os X Application Environments User Experience Porting Problems Rpvm: Cluster Statistical Computing in R , 2022 .

[18]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[19]  L. Stein Creating a bioinformatics nation , 2002, Nature.

[20]  Friedrich Leisch,et al.  Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis , 2002, COMPSTAT.

[21]  Jeremy G. Siek,et al.  The Boost Graph Library - User Guide and Reference Manual , 2001, C++ in-depth series.

[22]  A. J. Rossini,et al.  Literate Statistical Practice , 2003 .

[23]  Robert Gentleman,et al.  An extensible application for assembling annotation for genomic data , 2003, Bioinform..

[24]  Hao Wu,et al.  MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments , 2003 .

[25]  Peter Mork,et al.  Expression Array Annotation Using the BioMediator Biological Data Integration System and the BioConductor Analytic Platform , 2003, AMIA.

[26]  Jim Law,et al.  Review of "The boost graph library: user guide and reference manual by Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine." Addison-Wesley 2002. , 2003, SOEN.

[27]  R. Gentleman,et al.  Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. , 2004, Blood.

[28]  Regina Dunlea,et al.  Simple Object Access Protocol (SOAP) , 2005 .

[29]  Hesham El-Rewini,et al.  Message Passing Interface (MPI) , 2005 .