Improving silica fume cement by using silane

Silica fume cement was improved by using silane, which was introduced by either coating silica fume particles with silane or using silane as an admixture. Both methods of silane introduction similarly enhanced the workability, tensile strength and compressive strength, but the latter method resulted in lower compressive ductility, lower damping capacity, more drying shrinkage, lower air void content, higher density, higher specific heat and greater thermal conductivity, mainly due to the network of covalent coupling among the silica fume particles.

[1]  K. Khayat,et al.  Evaluation of cement grouts for embedding anchors under water , 1998 .

[2]  Kefeng Tan,et al.  Strengthening effects of finely ground fly ash, granulated blast furnace slag, and their combination , 1998 .

[3]  Sammy Chan,et al.  Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes , 1999 .

[4]  H. Toutanji,et al.  TENSILE AND COMPRESSIVE STRENGTH OF SILICA FUME-CEMENT PASTES AND MORTARS , 1996 .

[5]  M. Morsy,et al.  Effect of temperature on electrical conductivity of blended cement pastes , 1999 .

[6]  D. Chung,et al.  Effects of sand and silica fume on the vibration damping behavior of cement , 1998 .

[7]  Safwan A. Khedr,et al.  Characteristics of Silica‐Fume Concrete , 1994 .

[8]  Zongjin Li,et al.  Enhancement of rebar (smooth surface)-concrete bond properties by matrix modification and surface coatings , 1998 .

[9]  D. Chung,et al.  Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection , 1993 .

[10]  Mark D Luther,et al.  SILICA-FUME (MICROSILICA) CONCRETE IN BRIDGES IN THE UNITED STATES , 1988 .

[11]  N ChanSY,et al.  高性能ゼオライト,シリカヒューム,及びPFAコンクリートの初期表面吸着及び塩化物拡散の比較研究 , 1999 .

[12]  D. Chung,et al.  Effects of Water-Cement Ratio, Curing Age, Silica Fume, Polymer Admixtures, Steel Surface Treatments and Corrosion on the Bond between Concrete and Steel Reinforcing Bar , 1998 .

[13]  J E Gillott,et al.  Alkali – carbonate reaction: significance of chemical and mineral admixtures , 1995 .

[14]  D.D.L. Chung,et al.  Low-drying-shrinkage concrete containing carbon fibers , 1996 .

[15]  D. Chung,et al.  Reducing the drying shrinkage of cement paste by admixture surface treatments , 2000 .

[16]  D. Chung,et al.  Effect of carbon fibers on the vibration-reduction ability of cement , 1999 .

[17]  Jay G. Sanjayan,et al.  Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder , 1999 .

[18]  S. Diamond Alkali silica reactions — Some paradoxes , 1997 .

[19]  D.D.L. Chung,et al.  Microstructural and mechanical effects of latex, methylcellulose, and silica fume on carbon fiber reinforced cement , 1997 .

[20]  D. Chung,et al.  Improving the tensile properties of carbon fiber reinforced cement by ozone treatment of the fiber , 1996 .

[21]  Avi Mor,et al.  Steel-Concrete Bond in High-Strength Lightweight Concrete , 1993 .

[23]  K. Khayat,et al.  USE OF BLENDED SILICA FUME CEMENT IN COMMERCIAL CONCRETE MIXTURES , 1997 .

[24]  V. S. Ramachandran ALKALI-AGGREGATE EXPANSION INHIBITING ADMIXTURES , 1998 .

[25]  Michael D.A. Thomas,et al.  Use of ternary cementitious systems containing silica fume and fly ash in concrete , 1999 .

[26]  M. Toutanji Technical note The influence of air entrainment on the properties of silica fume concrete , 1998 .

[27]  D.D.L. Chung,et al.  Carbon-fiber-reinforced concrete smart structures capable of nondestructive flaw detection , 1993, Smart Structures.

[28]  Kamal H. Khayat,et al.  Bétons à haute performance pour fabriquer des panneaux destinés à réparer des structures submergées , 1993 .

[29]  D. Chung,et al.  IMPROVING THE BOND STRENGTH OF CONCRETE TO REINFORCEMENT BY ADDING METHYLCELLULOSE TO CONCRETE , 1998 .

[30]  B. Hamad,et al.  Bond of reinforcement in eccentric pullout silica fume concrete specimens , 1998 .

[31]  J. G. Cabrera,et al.  A statistical analysis of the factors which contribute to the corrosion of steel in Portland cement and silica fume concrete , 1995 .

[32]  Li Jianyong,et al.  Effect of slag and silica fume on mechanical properties of high strength concrete , 1997 .

[33]  Z. Bayasi,et al.  Properties of shrinkage-compensating silica-fume concrete made with Type K cement , 1992 .

[34]  D.D.L. Chung,et al.  Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments , 2000 .

[35]  D. R. Morgan,et al.  SILICA FUME IN SHOTCRETE , 1993 .

[36]  Odd E. Gjørv,et al.  EFFECT OF CONDENSED SILICA FUME ON STEEL CORROSION IN CONCRETE , 1995 .

[37]  S Pii IMPROVING SILICA FUME FOR CONCRETE BY SURFACE TREATMENT , 1998 .

[38]  Michel Pigeon,et al.  FLEXURAL PROPERTIES OF STEEL FIBER-REINFORCED CONCRETES AT LOW TEMPERATURES , 1998 .

[39]  D.D.L. Chung,et al.  Improving the vibration damping capacity of cement , 1998 .

[40]  D.D.L. Chung,et al.  Improving the abrasion resistance of mortar by adding latex and carbon fibers , 1997 .

[41]  Z. Bayasi,et al.  PROPERTIES OF SILICA FUME CONCRETE AND MORTAR , 1993 .

[42]  D. D. L. Chung,et al.  Effect of admixtures on thermal and thermomechanical behavior of cement paste , 1999 .

[43]  D.D.L. Chung,et al.  Increasing the specific heat of cement paste by admixture surface treatments , 1999 .

[44]  D.D.L. Chung,et al.  Improving the workability and strength of silica fume concrete by using silane-treated silica fume , 1999 .

[45]  M. N. Haque Strength development and drying shrinkage of high-strength concretes , 1996 .

[46]  V. Malhotra Fly Ash, Slag, Silica Fume, and Rice Husk Ash in Concrete: A Review , 1993 .

[47]  B. Lee,et al.  Effects of processing and materials variations on mechanical properties of lightweight cement composites , 1999 .