EXTREME CONDITIONS IN A CLOSE ANALOG TO THE YOUNG SOLAR SYSTEM: HERSCHEL OBSERVATIONS OF ϵ ERIDANI

Far-infrared Herschel images of the ϵ Eridani system, seen at a fifth of the Sun's present age, resolve two belts of debris emission. Fits to the 160 μm PACS image yield radial spans for these belts of 12–16 and 54–68 AU. The south end of the outer belt is ≈10% brighter than the north end in the PACS+SPIRE images at 160, 250, and 350 μm, indicating a pericenter glow attributable to a planet “c.” From this asymmetry and an upper bound on the offset of the belt center, this second planet should be mildly eccentric (ec ≈ 0.03–0.3). Compared to the asteroid and Kuiper Belts of the young Sun, the ϵ Eri belts are intermediate in brightness and more similar to each other, with up to 20 km sized collisional fragments in the inner belt totaling ≈5% of an Earth mass. This reservoir may feed the hot dust close to the star and could send many impactors through the Habitable Zone, especially if it is being perturbed by the suspected planet ϵ Eri b, at semi-major axis ≈3 AU.

[1]  K. Stapelfeldt,et al.  ASTEROID BELTS IN DEBRIS DISK TWINS: VEGA AND FOMALHAUT , 2013, 1301.1331.

[2]  G. Rieke,et al.  Resolved debris discs around A stars in the Herschel DEBRIS survey , 2012, 1210.0547.

[3]  D. Soderblom,et al.  MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR ϵ ERIDANI , 2012, 1212.4425.

[4]  M. Barlow,et al.  UvA-DARE ( Digital Academic Repository ) Herschel images of Fomalhaut : an extrasolar Kuiper belt at the height of its dynamical activity , 2012 .

[5]  R. Paul Butler,et al.  THE HARPS-TERRA PROJECT. I. DESCRIPTION OF THE ALGORITHMS, PERFORMANCE, AND NEW MEASUREMENTS ON A FEW REMARKABLE STARS OBSERVED BY HARPS , 2012, 1202.2570.

[6]  G. Rieke,et al.  MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: STEEP DUST-SIZE DISTRIBUTIONS , 2011, 1111.0296.

[7]  J. Armstrong,et al.  CONFIRMING FUNDAMENTAL PROPERTIES OF THE EXOPLANET HOST STAR ϵ ERIDANI USING THE NAVY OPTICAL INTERFEROMETER , 2012 .

[8]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[9]  C. Clarke,et al.  Debris disk size distributions: steady state collisional evolution with Poynting-Robertson drag and other loss processes , 2011, 1103.5499.

[10]  A. Quirrenbach,et al.  Mass constraints on substellar companion candidates from the re-reduced Hipparcos intermediate astrometric data: nine confirmed planets and two confirmed brown dwarfs , 2011, 1101.2227.

[11]  Christopher C. Stark,et al.  The cold origin of the warm dust around ε Eridani , 2010, 1011.4882.

[12]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[13]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[14]  A. Brandeker,et al.  The Vega debris disc: A view from Herschel , 2010, 1005.3543.

[15]  R. Murray-Clay,et al.  USING KUIPER BELT BINARIES TO CONSTRAIN NEPTUNE'S MIGRATION HISTORY , 2010, 1102.1430.

[16]  T. Löhne,et al.  THE DEBRIS DISK OF VEGA: A STEADY-STATE COLLISIONAL CASCADE, NATURALLY , 2009, 0912.1190.

[17]  R. Malhotra,et al.  Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System , 2009, 0909.3875.

[18]  M. Kasper,et al.  Imaging search for the unseen companion to ε Ind A - Improving the detection limits with 4 μm observations , 2009, 0906.4145.

[19]  UK,et al.  The history of the Solar system's debris disc: observable properties of the Kuiper belt , 2009, 0906.3755.

[20]  F. Marzari,et al.  Dynamical stability of the inner belt around Epsilon Eridani , 2009 .

[21]  K. Stapelfeldt,et al.  EPSILON ERIDANI'S PLANETARY DEBRIS DISK: STRUCTURE AND DYNAMICS BASED ON SPITZER AND CALTECH SUBMILLIMETER OBSERVATORY OBSERVATIONS , 2008, 0810.4564.

[22]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[23]  Suresh Sivanandam,et al.  Deep L'- and M-band Imaging for Planets around Vega and Eridani , 2008 .

[24]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[25]  Gordon A. H. Walker,et al.  The Extrasolar Planet ∊ Eridani b: Orbit and Mass , 2006 .

[26]  S. T. Megeath,et al.  A Spitzer IRAC Search for Substellar Companions of the Debris Disk Star ϵ Eridani , 2006, astro-ph/0605187.

[27]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[28]  E. I. Robson,et al.  Structure in the ϵ Eridani Debris Disk , 2005 .

[29]  Pierre Kervella,et al.  VLTI near-IR interferometric observations of Vega-like stars: Radius and age of a PsA, b Leo, b Pic, e Eri and t Cet , 2004 .

[30]  M. C. Wyatt,et al.  HOW OBSERVATIONS OF CIRCUMSTELLAR DISK ASYMMETRIES CAN REVEAL HIDDEN PLANETS : PERICENTER GLOW AND ITS APPLICATION TO THE HR 4796 DISK , 1999 .

[31]  Mullard Space Science Laboratory,et al.  A Dust Ring around epsilon Eridani: Analog to the Young Solar System , 1998, astro-ph/9808224.

[32]  H. H. Aumann,et al.  IRAS OBSERVATIONS OF MATTER AROUND NEARBY STARS. , 1985 .

[33]  C. Clarke,et al.  DEBRIS DISK SIZE DISTRIBUTIONS : STEADY STATE COLLISIONAL EVOLUTION WITH PR DRAG AND OTHER LOSS PROCESSES , 2022 .