Ultrafast imaging of surface plasmons propagating on a gold surface.

We record time-resolved nonlinear photoemission electron microscopy (tr-PEEM) images of propagating surface plasmons (PSPs) launched from a lithographically patterned rectangular trench on a flat gold surface. Our tr-PEEM scheme involves a pair of identical, spatially separated, and interferometrically locked femtosecond laser pulses. Power-dependent PEEM images provide experimental evidence for a sequential coherent nonlinear photoemission process, in which one laser source launches a PSP through a linear interaction, and the second subsequently probes the PSP via two-photon photoemission. The recorded time-resolved movies of a PSP allow us to directly measure various properties of the surface-bound wave packet, including its carrier wavelength (783 nm) and group velocity (0.95c). In addition, tr-PEEM images reveal that the launched PSP may be detected at least 250 μm away from the coupling trench structure.

[1]  Ulf Peschel,et al.  Functional plasmonic nanocircuits with low insertion and propagation losses. , 2013, Nano letters.

[2]  Eyal Feigenbaum,et al.  Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. , 2010, Nano letters.

[3]  V. A. Apkarian,et al.  Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse. , 2012, ACS nano.

[4]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[5]  Atsushi Kubo,et al.  Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. , 2007, Nano letters.

[6]  Yong Wang,et al.  Remote multi-color excitation using femtosecond propagating surface plasmon polaritons in gold films. , 2011, Optics express.

[7]  Michael I. Haftel,et al.  Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures , 2004 .

[8]  B. Chichkov,et al.  The interplay between localized and propagating plasmonic excitations tracked in space and time. , 2014, Nano letters.

[9]  G. Schönhense,et al.  Time-resolved two photon photoemission electron microscopy , 2002 .

[10]  R. Olmon,et al.  Optical dielectric function of gold , 2012 .

[11]  Q-Han Park,et al.  Coupling of surface plasmon polaritons and light in metallic nanoslits. , 2005, Physical review letters.

[12]  D. F. Ogletree,et al.  Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography. , 2013, Nano letters.

[13]  Yu Gong,et al.  Interferometric Plasmonic Lensing with Nanohole Arrays. , 2014, The journal of physical chemistry letters.

[14]  N. Halas,et al.  Nanostructure-mediated launching and detection of 2D surface plasmons. , 2010, ACS nano.

[15]  G Schönhense,et al.  Photoemission electron microscopy as a tool for the investigation of optical near fields. , 2005, Physical review letters.

[16]  Mark L. Brongersma,et al.  Active Plasmonics: Ultrafast developments , 2009 .

[17]  Zhijun Sun,et al.  Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. , 2005, Nano letters.

[18]  S. J. Peppernick,et al.  Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources. , 2013, Physical review letters.

[19]  Renato Zenobi,et al.  Developments in and practical guidelines for tip-enhanced Raman spectroscopy. , 2012, Nanoscale.

[20]  Naomi J. Halas,et al.  A plasmonic Fano switch. , 2012, Nano letters.

[21]  B. Chichkov,et al.  Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices. , 2013, Nano letters.

[22]  U. Welp,et al.  Surface plasmons at single nanoholes in Au films , 2004 .

[23]  Atsushi Kubo,et al.  Imaging of surface plasmon polariton fields excited at a nanometer-scale slit , 2011 .

[24]  N. García,et al.  Measuring the speed of a surface plasmon , 2004 .

[25]  Eric C Le Ru,et al.  Single-molecule surface-enhanced Raman spectroscopy. , 2012, Annual review of physical chemistry.

[26]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[27]  F. M. Z. Heringdorf,et al.  Femtosecond photoemission microscopy , 2007 .

[28]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[29]  Theodoros G. Soldatos,et al.  Correction: Corrigendum: Src activation by β-adrenoreceptors is a key switch for tumour metastasis , 2013, Nature Communications.

[30]  M. Abel,et al.  Surface plasmon assisted electron acceleration in photoemission from gold nanopillars , 2013 .

[31]  Vladimir A. Aksyuk,et al.  An Efficient Large-Area Grating Coupler for Surface Plasmon Polaritons , 2011, Plasmonics.

[32]  Stephan Link,et al.  Mechanistic study of bleach-imaged plasmon propagation (BlIPP). , 2013, The journal of physical chemistry. B.

[33]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. , 2012, Annual review of physical chemistry.

[34]  Atsushi Kubo,et al.  Femtosecond microscopy of localized and propagating surface plasmons in silver gratings , 2007 .

[35]  Leiming Wang,et al.  Universal Aspects of Ultrafast Optical Pulse Scattering by a Nanoscale Asperity , 2013 .

[36]  Graham R. Fleming,et al.  Fluorescence‐detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase‐locked pulses , 1991 .

[37]  Lina Cao,et al.  Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires. , 2012, ACS nano.

[38]  Yong Wang,et al.  A dual-color plasmonic focus for surface-selective four-wave mixing , 2012 .

[39]  S. J. Peppernick,et al.  Plasmonic field enhancement of individual nanoparticles by correlated scanning and photoemission electron microscopy. , 2011, The Journal of chemical physics.

[40]  Leiming Wang,et al.  Focusing surface plasmon polariton wave packets in space and time , 2013 .

[41]  Peter Nordlander,et al.  Influence of cross sectional geometry on surface plasmon polariton propagation in gold nanowires. , 2014, ACS nano.

[42]  Wayne P. Hess,et al.  Nonlinear Photoemission Electron Micrographs of Plasmonic Nanoholes in Gold Thin Films , 2014 .