Space-time tradeoffs for emptiness queries (extended abstract)

We present the fist nontrivial spat-time tradeoff lower bounds for hyperplane and halfspaceemptinessqueries. Our lower bounds apply to a general class of geometric range query data structures called partition graphs. Informally, a partition graph is a directed acyclic graph that describes a recursive decomposition of space. We show that any partition graph that supports hyperplane emptiness queries implicitly deiines a halfspace range query data structure in the Fredman/Yao semigroup arithmetic model, with the same space and time bounds. Thus, results of Bronnimann, Chazelle, and Path imply that any partition graph of size s that supports hyperplane emptiness queries in time t must satisfy the inequality st d = ~((n/logn)*–~d–Tl/ld+l)]. Using difterent techniques, we show that fl(nd/ polylog n) preprocessing time is required to achieve polylogarithmic query time, and that Cl(n('–1 " d/ polylogn) query time is required if only O(n polylog n) preprocessing time is used. These two lower bounds are optimal up to polylogarithrnic factors. For twcdimensional queries, we obtain an optimal continuous tradeoff between these two extremes. Finally, using a reduction argument, we show that the same lower bounds hold for halfspace emptiness queries in R.d('+3)'2 on a restricted class of partition graphs.

[1]  Jirí Matousek,et al.  Ray Shooting and Parametric Search , 1993, SIAM J. Comput..

[2]  Timothy M. Chan Output-sensitive results on convex hulls, extreme points, and related problems , 1995, SCG '95.

[3]  David G. Kirkpatrick,et al.  Determining the Separation of Preprocessed Polyhedra - A Unified Approach , 1990, ICALP.

[4]  Jirí Matousek,et al.  Range searching with efficient hierarchical cuttings , 1992, SCG '92.

[5]  Bernard Chazelle,et al.  Lower bounds for off-line range searching , 1997, Discret. Comput. Geom..

[6]  Jirí Matousek,et al.  Geometric range searching , 1994, CSUR.

[7]  Jirí Matousek,et al.  Efficient partition trees , 1991, SCG '91.

[8]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[9]  Jirí Matousek Linear Optimization Queries , 1993, J. Algorithms.

[10]  Robert E. Tarjan,et al.  A Class of Algorithms which Require Nonlinear Time to Maintain Disjoint Sets , 1979, J. Comput. Syst. Sci..

[11]  Je Erickson New lower bounds for halfspace emptiness , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[12]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[13]  Leonidas J. Guibas,et al.  The power of geometric duality , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[14]  Alok Aggarwal,et al.  Solving query-retrieval problems by compacting Voronoi diagrams , 1990, STOC '90.

[15]  Otfried Cheong Ray Shooting in Convex Polytopes , 1992, Symposium on Computational Geometry.

[16]  B. Chazelle Lower bounds on the complexity of polytope range searching , 1989 .

[17]  Michael L. Fredman,et al.  Lower Bounds on the Complexity of Some Optimal Data Structures , 1981, SIAM J. Comput..

[18]  Andrew Chi-Chih Yao On the Complexity of Maintaining Partial Sums , 1985, SIAM J. Comput..

[19]  William F. Eddy,et al.  Maximal empty ellipsoids , 1994, SODA '94.

[20]  Bernard Chazelle,et al.  Simplex Range Reporting on a Pointer Machine , 1995, Comput. Geom..

[21]  Otfried Cheong,et al.  On ray shooting in convex polytopes , 1993, Discret. Comput. Geom..

[22]  MatoušekJiří Geometric range searching , 1994 .

[23]  Jirí Matousek,et al.  Ray shooting and parametric search , 1992, STOC '92.

[24]  Mark de Berg,et al.  Computing and verifying depth orders , 1992, SCG '92.

[25]  Jirí Matousek,et al.  Reporting Points in Halfspaces , 1992, Comput. Geom..

[26]  János Pach,et al.  Combinatorial Geometry , 2012 .

[27]  Bernard Chazelle,et al.  Lower bounds for off-line range searching , 1995, STOC '95.

[28]  Jirí Matousek On Vertical Ray Shooting in Arrangements , 1992, Comput. Geom..

[29]  Jirí Matousek,et al.  Linear optimization queries , 1992, SCG '92.

[30]  Timothy M. Chan Fixed-dimensional linear programming queries made easy , 1996, SCG '96.

[31]  Bernard Chazelle,et al.  Point Location Among Hyperplanes and Unidirectional Ray-shooting , 1994, Comput. Geom..

[32]  Jeff Erickson,et al.  New lower bounds for Hopcroft's problem , 1995, SCG '95.

[33]  Bernard Chazelle,et al.  How hard is halfspace range searching? , 1992, SCG '92.

[34]  Bernard Chazelle,et al.  Cutting hyperplanes for divide-and-conquer , 1993, Discret. Comput. Geom..