Deep Brain Photoreceptors Control Light-Seeking Behavior in Zebrafish Larvae

Most vertebrates process visual information using elaborately structured photosensory tissues, including the eyes and pineal. However, there is strong evidence that other tissues can detect and respond to photic stimuli. Many reports suggest that photosensitive elements exist within the brain itself and influence physiology and behavior; however, a long-standing puzzle has been the identity of the neurons and photoreceptor molecules involved. We tested whether light cues influence behavior in zebrafish larvae through deep brain photosensors. We found that larvae lacking eyes and pineal perform a simple light-seeking behavior triggered by loss of illumination ("dark photokinesis"). Neuroanatomical considerations prompted us to test orthopedia (otpa)-deficient fish, which show a profound reduction in dark photokinesis. Using targeted genetic ablations, we narrowed the photosensitive region to neurons in the preoptic area. Neurons in this region express several photoreceptive molecules, but expression of the melanopsin opn4a is selectively lost in otpa mutants, suggesting that opn4a mediates dark photokinesis. Our findings shed light on the identity and function of deep brain photoreceptors and suggest that otpa specifies an ancient population of sensory neurons that mediate behavioral responses to light.

[1]  John E Dowling,et al.  Zebrafish larvae lose vision at night , 2010, Proceedings of the National Academy of Sciences.

[2]  T. Veen,et al.  Spectral characteristics of visible radiation penetrating into the brain and stimulating extraretinal photoreceptors , 1979, Journal of comparative physiology.

[3]  C. Barnstable,et al.  Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain , 1988, Cell and Tissue Research.

[4]  Michael J. Parsons,et al.  Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase , 2007, Mechanisms of Development.

[5]  T. Veen,et al.  Light-dependent motor activity and photonegative behavior in the eel (Anguilla anguilla L.) , 2004, Journal of comparative physiology.

[6]  S. Halford,et al.  VA Opsin-Based Photoreceptors in the Hypothalamus of Birds , 2009, Current Biology.

[7]  D. Farner,et al.  The sites of encephalic photoreception in photoperiodic induction of the growth of the testes in the White-crowned Sparrow, Zonotrichia leucophrys gambelii , 1978, Cell and Tissue Research.

[8]  C. Chien,et al.  Identification of a dopaminergic enhancer indicates complexity in vertebrate dopamine neuron phenotype specification. , 2011, Developmental biology.

[9]  G. Fraenkel,et al.  The Orientation of Animals, Kineses, Taxes and Compass Reactions, , 1941 .

[10]  A. Routtenberg,et al.  Response of the infant rat to light prior to eyelid opening: mediation by the superior colliculus. , 1978, Developmental psychobiology.

[11]  E. Scharrer Die Lichtempfindlichkeit blinder Elritzen , 1928, Naturwissenschaften.

[12]  W. Jeffery,et al.  Shadow response in the blind cavefish Astyanax reveals conservation of a functional pineal eye , 2008, Journal of Experimental Biology.

[13]  Christian Laggner,et al.  Rapid behavior—based identification of neuroactive small molecules in the zebrafish , 2009, Nature chemical biology.

[14]  Ryan M. Anderson,et al.  Conditional targeted cell ablation in zebrafish: A new tool for regeneration studies , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[15]  Sebastian Kraves,et al.  OFF ganglion cells cannot drive the optokinetic reflex in zebrafish , 2007, Proceedings of the National Academy of Sciences.

[16]  Yoshihiro Kubo,et al.  A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds , 2010, Proceedings of the National Academy of Sciences.

[17]  Russell N Van Gelder,et al.  Melanopsin-dependent light avoidance in neonatal mice , 2010, Proceedings of the National Academy of Sciences.

[18]  A. Simeone,et al.  Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. , 1999, Genes & development.

[19]  Y. Sztainberg,et al.  Homeodomain Protein Otp and Activity-Dependent Splicing Modulate Neuronal Adaptation to Stress , 2012, Neuron.

[20]  J. Dowling,et al.  Differential expression of duplicated VAL‐opsin genes in the developing zebrafish , 2008, Journal of neurochemistry.

[21]  C. M. Maurer,et al.  Distinct Retinal Deficits in a Zebrafish Pyruvate Dehydrogenase-Deficient Mutant , 2010, The Journal of Neuroscience.

[22]  K. Frisch,et al.  Beiträge zur Physiologie der Pigmentzellen in der Fischhaut , 1911, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[23]  E. Scharrer Die Lichtempfindlichkeit Blinder Elritzen. (Untersuchungen Über das Zwischenhirn der Fische I.) , 1928, Zeitschrift für vergleichende Physiologie.

[24]  Glen T. Prusky,et al.  Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision , 2010, Neuron.

[25]  Alexander F. Schier,et al.  Hypocretin/Orexin Overexpression Induces An Insomnia-Like Phenotype in Zebrafish , 2006, The Journal of Neuroscience.

[26]  Y. Fukada,et al.  Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. , 1999, Brain research. Molecular brain research.

[27]  S. Ryu,et al.  Orthopedia Homeodomain Protein Is Essential for Diencephalic Dopaminergic Neuron Development , 2007, Current Biology.

[28]  M. Tabata,et al.  Thresholds of retinal and extraretinal photoreceptors measured by photobehavioral response in catfish,Silurus asotus , 1989, Journal of Comparative Physiology A.

[29]  Olaf Ronneberger,et al.  Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems , 2011, Nature communications.

[30]  Harold A. Burgess,et al.  Distinct Retinal Pathways Drive Spatial Orientation Behaviors in Zebrafish Navigation , 2010, Current Biology.

[31]  K Adler,et al.  EXTRAOCULAR PHOTORECEPTION IN AMPHIBIANS , 1976, Photophysiology.

[32]  H. Burgess,et al.  Modulation of locomotor activity in larval zebrafish during light adaptation , 2007, Journal of Experimental Biology.

[33]  Herwig Baier,et al.  Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. , 2007, Developmental biology.

[34]  S. Hattar,et al.  Unexpected Diversity and Photoperiod Dependence of the Zebrafish Melanopsin System , 2011, PloS one.

[35]  G. Groos The comparative physiology of extraocular photoreception. , 1982, Experientia.

[36]  H. Hausen,et al.  Conserved Sensory-Neurosecretory Cell Types in Annelid and Fish Forebrain: Insights into Hypothalamus Evolution , 2007, Cell.