Global minima for semilinear optimal control problems

We consider an optimal control problem subject to a semilinear elliptic PDE together with its variational discretization. We provide a condition which allows to decide whether a solution of the necessary first order conditions is a global minimum. This condition can be explicitly evaluated at the discrete level. Furthermore, we prove that if the above condition holds uniformly with respect to the discretization parameter the sequence of discrete solutions converges to a global solution of the corresponding limit problem. Numerical examples with unique global solutions are presented.

[1]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[2]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[3]  Eduardo Casas Error Estimates for the Numerical Approximation of Semilinear Elliptic Control Problems with Finitely Many State Constraints , 2002 .

[4]  Arnd Rösch,et al.  Finite Element Discretization of State-Constrained Elliptic Optimal Control Problems with Semilinear State Equation , 2015, SIAM J. Control. Optim..

[5]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[6]  Arnd Rösch,et al.  Discretization of Optimal Control Problems , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[7]  Eduardo Casas,et al.  UNIFORM CONVERGENCE OF THE FEM. APPLICATIONS TO STATE CONSTRAINED CONTROL PROBLEMS , 2002 .

[8]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[9]  W. Velte On optimal constants in some inequalities , 1990 .

[10]  Manuel del Pino,et al.  Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions☆ , 2002 .

[11]  E. Veling LOWER BOUNDS FOR THE INFIMUM OF THE SPECTRUM OF THE SCHRÖDINGER OPERATOR IN R N AND THE , 2002 .

[12]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[13]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[14]  Fredi Tröltzsch,et al.  Sufficient Second-Order Optimality Conditions for Semilinear Control Problems with Pointwise State Constraints , 2008, SIAM J. Optim..

[15]  E. Casas,et al.  Second Order Optimality Conditions and Their Role in PDE Control , 2015 .

[16]  Michael Hinze,et al.  elliptic control problems in the presence of control and state constraints , 2007 .

[17]  Eduardo Casas,et al.  New regularity results and improved error estimates for optimal control problems with state constraints , 2014 .

[18]  E. Casas Boundary control of semilinear elliptic equations with pointwise state constraints , 1993 .

[19]  Boris Vexler,et al.  Finite Element Pointwise Results on Convex Polyhedral Domains , 2016, SIAM J. Numer. Anal..