Bulk Crystal Growth of Semiconductors: An Overview

The development of many new electronic devices is strictly connected with the availability of materials in single-crystalline form, with low density of crystallographic defects and specific electrical, magnetic, optical, chemical, and mechanical properties. These high-quality single crystals can be used either as substrates for the epitaxial growth of complicated multilayer structures or directly for the device manufacture. In the latter case, the active region of the device is obtained via dopant diffusion into the bulk material, surface oxidation, or metallization. One example is provided by polycrystalline Si solar cells, while infrared lasers, modulators, and detectors for optical telecommunications provide examples of complex epitaxial structures on high-quality InP or GaAs substrates. The need for high-quality semiconductor single crystals has triggered the development of suitable growth processes by which the composition, the structure, as well as the physical properties of a given semiconducting material may be accurately controlled. Different bulk growth technologies have been applied in order to obtain large single crystals of semiconducting materials: melt growth, solution growth, and vapor transport. The thermodynamical properties and the desired characteristics of the semiconductor to be grown actually decide what approach is most convenient. This chapter reviews the theoretical basis of the crystal growth processes and the most important crystal growth techniques. Examples of growth techniques developed in view of specific semiconductors are also reported.

[1]  W. Gault,et al.  A novel application of the vertical gradient freeze method to the growth of high quality III–V crystals , 1986 .

[2]  R. Linares,et al.  Vapor Growth of Yttrium Iron Garnet , 1964 .

[3]  J. Brice,et al.  Crystal Growth Processes , 1987 .

[4]  K. Nakajima,et al.  Advances in Crystal Growth Research , 2001 .

[5]  S. Coriell,et al.  Shape stability in float zoning of silicon crystals , 1977 .

[6]  D. Chaussende,et al.  Status of SiC bulk growth processes , 2007 .

[7]  A. Puchalski,et al.  Bulk ammonothermal GaN , 2009 .

[8]  W. Tolksdorf Growth of yttrium iron garnet single crystals , 1968 .

[9]  R. C. Clarke,et al.  Growth of large SiC single crystals , 1993 .

[10]  D. C. Stockbarger The Production of Large Single Crystals of Lithium Fluoride , 1936 .

[11]  L. Gonzalez-Ramirez,et al.  Granada Crystallisation Box: a new device for protein crystallisation by counter-diffusion techniques. , 2002, Acta crystallographica. Section D, Biological crystallography.

[12]  R. Heckingbottom,et al.  Growth of crystals from the gas phase. Part I. Diffusional limitations and interfacial stability in crystal growth by dissociative sublimation , 1970 .

[13]  J. Friedrich,et al.  Comparative numerical study of the effects of rotating and travelling magnetic fields on the interface shape and thermal stress in the VGF growth of InP crystals , 2004 .

[14]  J. Tester,et al.  Experimental measurement of the rate of methyl tert-butyl ether hydrolysis in sub- and supercritical water , 2001 .

[15]  R. C. Devries,et al.  Growth of Aluminum Oxide Whiskers by Vapor Deposition , 1959 .

[16]  K. Hoshikawa,et al.  Heavily boron-doped Czochralski (CZ) silicon crystal growth: segregation and constitutional supercooling , 2000 .

[17]  T. Fukuda,et al.  A new magnetic-field applied pulling apparatus for LEC GaAs single crystal growth , 1983 .

[18]  K. Benz,et al.  THM growth of AlxGa1−xSb bulk crystals , 1993 .

[19]  G. Gerbeth,et al.  Numerical and experimental modeling of the melt flow in a traveling magnetic field for vertical gradient freeze crystal growth , 2007 .

[20]  M. Albrecht,et al.  Homoepitaxial seeding and growth of bulk AlN by sublimation , 2008 .

[21]  I. Grzegory,et al.  Thermodynamical properties of III–V nitrides and crystal growth of GaN at high N2 pressure , 1997 .

[22]  P. Rudolph,et al.  Growth of GaAs crystals from Ga-rich melts by the VCz method without liquid encapsulation , 2004 .

[23]  K. Oshima,et al.  Crystal growth of GaN by ammonothermal method , 2004 .

[24]  P. Görnert Kinetics and mechanism of flux crystal growth , 1990 .

[25]  P. Rudolph,et al.  Vertical gradient freeze of 4 inch Ge crystals in a heater-magnet module , 2009 .

[26]  S. Coriell,et al.  Theory of molten zone shape and stability , 1977 .

[27]  L. Gower,et al.  Growth of nanofibrous barium carbonate on calcium carbonate seeds , 2008 .

[28]  E. D. Kolb,et al.  Hydrothermal Growth of Large Sound Crystals of Zinc Oxide , 1964 .

[29]  K. Byrappa Hydrothermal growth of crystals , 1991 .

[30]  B. Penn,et al.  Growth of bulk single crystals of organic materials for nonlinear optical devices : an overview , 1991 .

[31]  Boleslaw Lucznik,et al.  Crystallization of GaN by HVPE on pressure grown seeds , 2006 .

[32]  G. C. Joyce,et al.  The weighing method of automatic Czochralski crystal growth: II. Control equipment , 1977 .

[33]  Mitsuru Sato,et al.  Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method , 2004 .

[34]  Makoto Kuramoto,et al.  Growth of silicon crystal with a diameter of 400 mm and weight of 400 kg , 2001 .

[35]  G. Gerbeth,et al.  Fluid flow analysis and vertical gradient freeze crystal growth in a travelling magnetic field , 2006 .

[36]  D. Ehrentraut,et al.  Reviewing recent developments in the acid ammonothermal crystal growth of gallium nitride , 2008 .

[37]  A. W. Vere Crystal Growth: Principles And Progress , 2013 .

[38]  G. C. Joyce,et al.  The weighing method of automatic Czochralski crystal growth: I. Basic theory , 1977 .

[39]  H. E. Labelle,et al.  Growth of controlled profile crystals from the melt: Part I - Sapphire filaments , 1971 .

[40]  K. Hoshikawa,et al.  Crystal growth of completely dislocation-free and striation-free GaAs , 1985 .

[41]  A. Yoshikawa,et al.  Solvothermal growth of ZnO , 2006 .

[42]  K. Fujita,et al.  Growth and characterization of III–V materials grown by vapor-pressure-controlled Czochralski method: comparison with standard liquid-encapsulated Czochralski materials , 1994 .

[43]  S. Porowski High pressure growth of GaN — new prospects for blue lasers , 1996 .

[44]  P. Rudolph,et al.  Basic problems of vertical Bridgman growth of CdTe , 1993 .

[45]  G. F. Hüttig,et al.  Aktive Oxyde. LXIII. Die spezifischen Wärmen des kristallisierten Zinkhydroxyds und die Berechnung der Affinitäten zwischen Zinkoxyd und Wasser , 1933 .

[46]  B. Nacke,et al.  Investigation of asymmetry effects in a heater-magnet module for TMF VGF and LEC growth by three-dimensional numerical modeling , 2008 .

[47]  Lester Haar Nbs/Nrc Steam Tables , 1984 .

[48]  K. Schwerdtfeger,et al.  Single crystal growth with the Czochralski method involving rotational electromagnetic stirring of the melt , 1994 .

[49]  L. N. Demianets,et al.  Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions , 2002 .

[50]  A. Winnacker,et al.  Sublimation growth of silicon carbide bulk crystals: experimental and theoretical studies on defect formation and growth rate augmentation , 1999 .

[51]  Toshihiko Suzuki,et al.  Czochralski Silicon Crystals Grown in a Transverse Magnetic Field , 1985 .

[52]  Michael O. Thompson,et al.  Experimental test of morphological stability theory for a planar interface during rapid solidification , 1998 .

[53]  G. Iseler Advances in LEC growth of InP crystals , 1984 .

[54]  E. Kaldis,et al.  Crystal growth from high-temperature solutions , 1976 .

[55]  K. Hulme,et al.  The Use of Electromagnetic Stirring in Zone Refining , 1958 .

[56]  G. W. Morey,et al.  The Hydrothermal Formation of Silicates, A Review , 1913 .

[57]  Robert A. Laudise,et al.  Properties of Lithium‐Doped Hydrothermally Grown Single Crystals of Zinc Oxide , 1965 .

[58]  K. Benz,et al.  Semiconductor crystal growth under microgravity: Results of Float-zone technique , 1999 .

[59]  R. Prim,et al.  The Distribution of Solute in Crystals Grown from the Melt. Part I. Theoretical , 1953 .

[60]  T. Fukuda,et al.  Programmed magnetic field applied liquid encapsulated Czochralski crystal growth , 1987 .

[61]  R. Grugel,et al.  The effect of the traveling magnetic field (TMF) on the buoyancy-induced convection in the vertical bridgman growth of semiconductors , 2004 .

[62]  P. Rudolph,et al.  Growth of semi-insulating GaAs crystals in low temperature gradients by using the Vapour Pressure Controlled Czochralski Method (VCz) , 2001 .

[63]  L. Oster,et al.  Liquid encapsulated growth of GaP from non-stoichiometric melts , 1972 .

[64]  M. Ueltzen The Verneuil flame fusion process: substances , 1993 .

[65]  A. Ballman,et al.  HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE1 , 1960 .

[66]  G. W. Green,et al.  Automatic control of Czochralski crystal growth , 1972 .

[67]  D. V. Kostomarov,et al.  Mechanism of zinc oxide single crystal growth under hydrothermal conditions , 2001 .

[68]  J. Mercier Recent developments in chemical vapor transport in closed tubes , 1982 .

[69]  T. Fukuda,et al.  Growth of twin-free InP single cystals by the liquid encapsulated vertical Bridgman technique , 1993 .

[70]  J. Nause,et al.  Pressurized melt growth of ZnO boules , 2005 .

[71]  A. Chernov,et al.  Protein crystals and their growth. , 2003, Journal of structural biology.

[72]  T. Lyubimova,et al.  Time-dependent magnetic field influence on GaAs crystal growth by vertical Bridgman method , 2004 .

[73]  Akira Yoshida,et al.  Developments of GaN Bulk Substrates for GaN Based LEDs and LDs , 2000 .

[74]  D. Hurle,et al.  Avoidance of Growth-striae in Semiconductor and Metal Crystals grown by Zone-melting Techniques , 1966, Nature.

[75]  D. Bliss,et al.  MLEK crystal growth of (100) indium phosphide , 1991 .

[76]  G. Attolini,et al.  Vapour growth of bulk crystals by PVT and CVT , 2004 .

[77]  S. Nakai,et al.  Growth and optical characterization of large potassium titanyl phosphate crystals , 1993 .

[78]  C. Maccato,et al.  Facile and Reproducible Synthesis of Nanostructured Colloidal ZnO Nanoparticles from Zinc Acetylacetonate: Effect of Experimental Parameters and Mechanistic Investigations , 2009 .

[79]  D.T.J. Hurle,et al.  Analytical representation of the shape of the meniscus in Czochralski growth , 1983 .

[80]  D. Schulz,et al.  The growth of ZnO crystals from the melt , 2007, 0712.1444.

[81]  W. W. Piper,et al.  Vapor‐Phase Growth of Single Crystals of II–VI Compounds , 1961 .

[82]  J. Mercier,et al.  Vapor phase reactions in an open tube for FeS crystallization , 1975 .

[83]  Robert A. Laudise,et al.  Hydrothermally Grown ZnO Crystals of Low and Intermediate Resistivity , 1966 .

[84]  I. Ivanov,et al.  Large-area free-standing GaN substrate grown by hydride vapor phase epitaxy on epitaxial lateral overgrown GaN template , 2006 .

[85]  Takashi Sekiguchi,et al.  Hydrothermal growth of ZnO single crystals and their optical characterization , 2000 .

[86]  P. Ramasamy,et al.  Growth and characterization of sulphate mixed L-arginine phosphate and ammonium dihydrogen phosphate/potassium dihydrogen phosphate mixed crystals , 1994 .

[87]  P. W. Bridgman Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin , 1925 .

[88]  H. Schäfer Chemical Transport Reactions , 2013 .

[89]  W. C. Dash Silicon Crystals Free of Dislocations , 1958 .

[90]  M. Vogel,et al.  Polytype stability and defects in differently doped bulk SiC , 2008 .

[91]  Merton C. Flemings,et al.  Elimination of Solute Banding in Indium Antimonide Crystals by Growth in a Magnetic Field , 1966 .

[92]  A. R. Hutson,et al.  The hydrothermal growth of low carrier concentration ZnO at high water and hydrogen pressures , 1967 .

[93]  P. I. Antonov Properties of profiled semiconductor single crystals grown by Stepanov's method , 1974 .

[94]  W. Tiller,et al.  The redistribution of solute atoms during the solidification of metals , 1953 .

[95]  K. Sanada,et al.  Single-crystal growth of aluminum nitride on 6H-SiC substrates by an open-system sublimation method , 2009 .

[96]  T. Fujii,et al.  Growth cells of heavily In-doped LEC GaAs crystals , 1988 .

[97]  S. Qadri,et al.  Growth of (100) GaAs by vertical zone melting , 1991 .

[98]  J. B. Mullin,et al.  Liquid encapsulation techniques: The use of an inert liquid in suppressing dissociation during the melt-growth of InAs and GaAs crystals , 1965 .

[99]  T. Ciszek,et al.  Techniques for the crystal growth of silicon ingots and ribbons , 1984 .

[100]  G. Müller,et al.  Growth of 3″ and 4″ gallium arsenide crystals by the vertical gradient freeze (VGF) method , 2000 .

[101]  K. Hohn,et al.  Seeded growth of AlN on SiC substrates and defect characterization , 2008 .

[102]  H. Riemann,et al.  Silicon Floating Zone Process: Numerical Modeling of RF Field, Heat Transfer, Thermal Stress, and Experimental Proof for 4 Inch Crystals , 1995 .

[103]  G. Müller,et al.  Crystal growth : from fundamentals to technology , 2004 .

[104]  L. A. Bumm,et al.  ZnO nanorod growth by chemical bath method , 2008 .