On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems

In this paper, we consider discrete and continuous QR algorithms for computing all of the Lyapunov exponents of a regular dynamical system. We begin by reviewing theoretical results for regular systems and present general perturbation results for Lyapunov exponents. We then present the algorithms, give an error analysis of them, and describe their implementation. Finally, we give several numerical examples and some conclusions.

[1]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[2]  O. Perron Die Ordnungszahlen linearer Differentialgleichungssysteme , 1930 .

[3]  Solomon Lefschetz,et al.  Differential Equations: Geometric Theory , 1958 .

[4]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[5]  Lamberto Cesari,et al.  Asymptotic Behavior and Stability Problems in Ordinary Differential Equations , 1963 .

[6]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[7]  R. Conti,et al.  Nonlinear Differential Equations , 1964 .

[8]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[9]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[10]  H. A. Watts,et al.  Computational Solution of Linear Two-Point Boundary Value Problems via Orthonormalization , 1977 .

[11]  G. Stewart Perturbation Bounds for the $QR$ Factorization of a Matrix , 1977 .

[12]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[13]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[14]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[15]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[16]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[17]  A. Sändig,et al.  Nonlinear Differential Equations , 1980 .

[18]  A. Davey,et al.  An automatic orthonormalization method for solving stiff boundary-value problems , 1983 .

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[21]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[22]  Gunter H. Meyer,et al.  Continuous orthonormalization for boundary value problems , 1986 .

[23]  Russell Johnson Remarks on linear differential systems with measurable coefficients , 1987 .

[24]  K. Palmer A perturbation theorem for exponential dichotomies , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  Steven A. Orszag,et al.  Stability and Lyapunov stability of dynamical systems: A differential approach and a numerical method , 1987 .

[26]  Ulrich Parlitz,et al.  Comparison of Different Methods for Computing Lyapunov Exponents , 1990 .

[27]  Aspects of backward error analysis of numerical ODEs , 1993 .

[28]  R. Russell,et al.  Unitary integrators and applications to continuous orthonormalization techniques , 1994 .

[29]  Shui-Nee Chow,et al.  A Shadowing Lemma Approach to Global Error Analysis for Initial Value ODEs , 1994, SIAM J. Sci. Comput..

[30]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[31]  L. Dieci,et al.  Computation of a few Lyapunov exponents for continuous and discrete dynamical systems , 1995 .

[32]  Li︠u︡dmila I︠A︡kovlevna Adrianova Introduction to linear systems of differential equations , 1995 .

[33]  Benedetta Morini,et al.  Computational Techniques for Real Logarithms of Matrices , 1996, SIAM J. Matrix Anal. Appl..

[34]  L. Dieci,et al.  COMPUTATIONAL TECHNIQUES FOR REAL LOGARITHMS OF , 1996 .

[35]  V. Stepanov,et al.  Qualitative theory of differential equations , 1960 .